Математические чудеса и тайны - [5]
Объяснение. Числовое значение недостающей карты можно установить, подсчитав в уме сумму числовых значений карт, выложенных на стол. При этом валетам приписывают значение 11, дамам 12. Королей можно считать нулями и не учитывать вовсе.
Без королей сумма числовых значений всех карт в полной колоде равна 312. Поэтому, чтобы найти числовое значение отсутствующей карты, нужно из 312 отнять сумму числовых значений 51 карты. Если эта последняя сумма окажется равной 312, то недостающая карта — король.
При показе этого фокуса важно владеть методами быстрого счета. Так, например, очевидно, что, прибавляя 11, удобно сначала прибавить 10, а затем еще единицу, а для прибавления 12 вы сначала прибавляете 10, а затем двойку. Дальнейшею увеличения быстроты счета можно достичь путем «отбрасывания двадцаток», т. е. считая по модулю 20. Иначе говоря, как только сумма превзойдет 20, отбросьте это число и держите в памяти только остаток. После того как будет положена последняя карта, вам придется запомнить небольшое число от 0 до 12 включительно. Отнимите это число от 12, и вы получите числовое значение отсутствующей карты. Если последней суммой окажется 12, то недостающая карта — король. Нам кажется, что исключение «двадцаток» — лучший способ убыстрения счета. Однако многие предпочитают в этом случае отбрасывать 13. Тогда, например, складывая 7 и 8 и отбрасывая 1З, вы запоминаете 2. Вместо добавления 11 (в случае валета) и последующего отбрасывания 13 проще, ничего не добавляя, вычесть 2.
В случае дамы отбросьте 1. Ясно, что королей принимать во внимание не нужно. Закончив подсчет, отнимите последнюю цифру от 13 и вы получите числовое значение спрятанной карты. После того как оно найдено, можно, конечно, сдавая карты вторично, узнать масть отсутствующей карты. Однако при этом сразу раскрывается секрет фокуса. Как же определить масть карты при первой раскладке, одновременно с ее числовым значением?
Один из способов, — правда трудный, если вы не владеете техникой быстрого счета в уме, — это одновременное запоминание суммарного числа для масти и такого же числа для числового значения карты.
Припишем, например, картам пиковой масти числовое значение 1, трефовой — 2, червонной — 3, бубновой — нуль (и в расчет их не принимаем). При сложении отбрасываются десятки, и в итоге получается одно из четырех чисел: 5, 6, 7 или 8. Отнимая его от восьми, вы найдете масть спрятанной карты.
Вот другой метод прослеживания сумм числовых значений карт и числовых значений мастей. Установим какой-нибудь порядок мастей, скажем, пики, червы, трефы, бубны. Прежде чем открыть первую карту, скажем про себя: 0-0-0-0. Если первой картой окажется, например, семерка черв, произнесите про себя 0-7-0-0. Если следующей картой будет, скажем, пятерка бубен, счет изменяется на 0-7-0-5.
Другими словами, приходится держать в памяти изменяющуюся сумму по всем четырем мастям. Если из колоды изъята только одна карта, то при подсчете всех четырех изменяющихся сумм необходимо включать королей. Сумма чистовых значений карт для каждой из четырех мастей должна быть в этом случae равна 91. Но так как одна карта спрятана, сумма для соответствующей масти будет меньшей. Так, если вы закончили счетом 91-91-90-91, то это значит, что отсутствует туз треф. Отбрасывая двадцатки, можно, как и раньше, облегчить себе подсчет. При этом для получения числового значения отсутствующей карты последнюю найденную сумму нужно отнять от 11; если же она больше 11, то ее следует отнять от 31. (Впрочем, можно просто запомнить, что конечные суммы 20, 19 и 18 отвечают соответственно валету, даме и королю.)
Преимущество этого способа состоит в том, что удалять можно не одну карту, а сразу четыре — по одной каждой масти, при этом отгадать четыре карты будет не труднее, чем одну. В этом варианте королей можно не учитывать, так как заранее известно, что отсутствует по одной карте каждой масти. Конечной суммой для каждой масти теперь будет 78. (Короли не учитываются!) Отбросив три раза по 20, получим 18.
Таким образом, конечная цепочка 7-16-13-18 укажет, что отсутствуют следующие карты: валет пик, двойка черв, пятерка треф и король бубен.
Однако удерживать в памяти четыре меняющиеся цифры нелегко.
Чтобы обойти эту трудность, мы рекомендуем пользоваться в качестве «секретного» счетного приспособления… ногами. Если при раскладке карт вы сидите за столом и ваши ноги скрыты от присутствующих, то маловероятно, что небольшие шевеления ими которые здесь потребуются, будут кем-либо замечены.
В начале фокуса поставьте ноги так, чтобы подошвы ботинок прилегали к полу. Сдавая карту на стол, подымайте или опускайте носки ботинок по следующей системе. Появление карты пиковой масти отмечайте приподыманием или опусканием носка левого ботинка. Точнее говоря, с появлением первой такой карты приподымайте носок, второй — опускайте третьей — снова приподымайте, и т. д. Если карта червонной масти, то приподымайте или опускайте носок правого ботинка. Если карта окажется трефовой, то меняйте одновременно положение обоих носков. При появлении бубновой карты вообще не меняйте положения носков. После того как положена последняя карта, вы так узнаете масть отсутствующей карты: если левый носок на полу — карта красной масти, если приподнят — черной, если правый носок на полу, карта будет пиковой или бубновое масти; если правый носок приподнят — трефовой или червонной. Имея в виду вышесказанное, легко узнать масть спрятанной карты. Так, если оба носка на полу, карта будет бубновой масти. Если оба носка приподняты—трефовой масти, если приподнят один левый носок — пиковой, а если приподнят одни правый — червонной.
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.
«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.
Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…
Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.
Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.