Математические чудеса и тайны - [4]
Интересно заметить, что в описанном фокусе, как и в других, основанных на том же принципе, показывающий может разрешить зрителю приписывать любые числовые значения валетам, дамам и королям.
Например, зритель может пожелать считать каждый валет тройкой, даму — семеркой, а короля — четверкой. Это никак не скажется на показе фокуса и может придать ему больше «таинственности».
Фокус, собственно, требует только одного: чтобы в колоде были 52 карты; какие это будут карты, не играет ни малейшей роли. Если все они будут двойками, фокус тоже получится. Это означает, что зритель может приписать любой карте новое значение, какое ему вздумается, причем это не повлияет на успех фокуса.
Фокус с задуманной картой
Несколько лет назад было предложено удивительное усовершенствование этого фокуса. Перетасовав колоду, показывающий выкладывает кучку в девять карт лицевой стороной вниз. Зритель выбирает одну из этих карт, запоминает ее и кладет на верх кучки.
Оставшаяся часть колоды кладется на кучку, и таким образом, замеченная карта оказывается девятой снизу.
Теперь показывающий берет катоду и начинает выкладывать карты по одной в кучку лицевой стороной кверху, считая при этом вслух в обратном порядке от 10 до 1. Если числовое значение положенной карты случайно совпадает с называемой цифрой (например, появилась четверка в то время, когда он произнес: «четыре»), то откладывание карт в эту кучку прекращается и начинается откладывание следующей кучки. Если же такого совпадения появляющейся карты и произносимого числа не произошло, то отсчитывание заканчивается на цифре 1 и кучка «бьется», т. е. накрывается следующей по порядку картой (лицевой стороной вниз), взятой сверху колоды.
Так выкладываются четыре кучки, после чего числовые значения «непобитых» (открытых) карт, лежащих сверху кучек, складываются. Отсчитав теперь из катоды это число карт, зритель обнаруживает под последней из них выбранную им карту. Этот вариант фокуса гораздо эффектнее прежнего, так как выбор карт, входящих в сумму, кажется совершенно случайным, а «принцип компенсации», на котором основан фокус, скрыт значительно глубже[4])
Циклическое число
Многие диковинки из области теории чисел можно с успехом демонстрировать как карточные фокусы.
В качестве примера приведем следующий фокус. Он основан на том, что если умножить «циклическое число» 142857 на любое целое чисто от 2 до 6, то поручится число, составленное из тех же цифр с круговой (циклической) их перестановкой.
Фокус состоит в следующем. Зрителю даются пять карт красной масти, имеющие чистовые значения 2, 3, 4, 5 и 6. Себе же показывающий берет шесть карт черной масти, размещая их так, чтобы их числовые значения соответствовали цифрам числа 142857. Как показывающий, так и зритель тасуют свои карты; при этом показывающий только делает вид, что тасует, а в самом деле сохраняет и порядок неизменным.
(Этого можно легко добиться, дважды перекладывая карты по одной с одной стороны колоды на другую.
Быстрое выполнение этой операции создает полное впечатление тасовки, хотя весь эффект состоит в том, что расположение карт дважды меняется на обратное, оставляя таким образом первоначальный порядок неизменным.)
Показывающий раскладывает на столе карты в ряд, лицевой стороной кверху, образуя число 142857.
Зритель вытягивает одну из своих карт и кладет ее лицевой стороной вверх под рядом, разложенным показывающим. С помощью карандаша и бумаги зритель перемножает наше число на числовое значение вытянутой им карты. Пока он занят этим делом, показывающий собирает свои карты, накладывает на первую слева карту соседнюю, затем на нее соседнюю и т. д., «снимает» их один раз и снова кладет на стол кучкой (лицевой стороной книзу)[5]). После того как зритель выполнит умножение, показывающий берет свою кучку карт и снова раскладывает их слева направо лицевой стороной кверху. Шестизначное число, которое при этом получается, в точности совпадает с результатом умножения, найденным зрителем.
Объяснение. Карты черной масти показывающий собирает, не нарушая порядка, в котором они были разложены. Допустим, что зритель умножал наше число на 6: тогда произведение должно оканчиваться двойкой, так как шесть раз по семь (это последняя цифра множимого) будет сорок два. Если снять так, чтобы двойка оказалась внизу, то после того как карты будут разложены в ряд, она окажется последней картой и изображаемое картами число совпадет с ответом, полученным зрителем.
Циклическое число 142857 является обратным по отношению к простому числу 7 в том смысле, что оно получается от деления 1 на 7. Выполняя это деление, мы получаем бесконечную периодическую дробь с периодом, совпадающим с нашим циклическим числом.
Другие, большие, циклические числа также можно получить путем деления единицы на большие простые числа.
Отсутствующая карта
Пока показывающий стоит спиной к зрителям, кто-нибудь из них вынимает карту из колоды, кладет ее в карман и тасует колоду. Затем показывающий поворачивается, берет колоду и начинает выкладывать карты по одной лицевой стороной кверху. После того как выйдут все карты, он называет недостающую.
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.
«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.
Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…
Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.
Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.