Математические чудеса и тайны - [27]
В этом последнем случае запомните следующее ключевое число 2. Если же частное было целым, запоминать ничего не надо.
7) Предложите прибавить к результату 2.
8) Попросите вычесть 11. Конечно, два последних шага означают не что иное, как вычитание 9; однако эти ваши действия имеют целью замаскировать применение принципа девятки.
9) Если зритель объявит вам, что вычитание 11 произвести невозможно, потому что последнее полученное им число слишком мало, вы сразу же сможете назвать первоначально задуманное число. Так, например, если вам пришлось запоминать только ключевое число 1, была задумана единица; если вы запоминали ключевое число 2, была задумана двойка; если же приходилось запоминать оба ключевых числа — была задумана тройка (ее можно рассматривать как результат сложения обоих ключевых чисел); если же ничего не пришлось запоминать, была задумана четверка.
Допустим теперь, что вычитание числа 11 произвести можно, это будет означать, что задуманное число больше четырех.
Запомните ключевое число 4 и продолжайте следующим образом:
10) Попросите добавить к последнему результату 2.
11) Велите вычесть 11.
12) Если это сделать невозможно, тогда, сложив ключевые числа, вы получаете ответ. Если же зритель молча выполнил вычитание, сложите ключевые числа, прибавьте еще раз число 4 и вы получите задуманное число.
На первый взгляд этот фокус может показаться неоправданно сложным, но если вы его тщательно проработаете, вся процедура покажется вам совсем нетрудной. Конечно, вычитание девяток можно производить каким угодно способом. Например, вместо того чтобы прибавлять два и отнимать 11, можно предложить зрителю добавить 5 и вычесть 14 или прибавить 1 и вычесть 10. После нескольких демонстраций вы научитесь давать указания в такой форме, что у зрителя не будет возникать никаких подозрений, что своими ответами он дает нужную вам информацию о задуманном числе. После того как будет выполнена предложенная вами серия операций, кажущихся на первый взгляд бессмысленными и результаты которых к тому же не сообщаются, зритель с удивлением встретит объявление задуманного им числа[27]).
Тайна девятки
Секрет только что описанного фокуса основан на свойствах числа 9. Существует множество других фокусов с числами, в которых используются некоторые любопытные особенности числа 9. Например, написав в обратном порядке любое трехзначное число (при условии, что первая и последняя его цифры различны) и вычтя из большего числа меньшее, мы всегда получим в середине девятку и сумму крайних цифр, тоже равную 9. Это означает, что вы сразу можете назвать результат вычитания, зная только его первую или только последнюю цифру. Если теперь написать разность в обратном порядке и эти два числа сложить, то получится 1089. Один из популярных фокусов с числами состоит в следующем. Число 1089 пишется заранее на листке бумаги, который затем переворачивается лицевой стороной вниз. После того как зритель окончит серию операций, описанных выше, и объявит свой окончательный результат — 1089, покажите записанное вами предсказание, держа при этом лист вверх ногами. Написанное на нем число будет прочитано как 6801, что, конечно, не будет правильным ответом. Сделайте удивленное лицо, а затем извинитесь, что взяли лист не так, как нужно. Поверните его на 180° и покажите верное число. Это небольшое попутное представление вносит развлекательный момент в демонстрацию фокуса.
Цифровые корни
Если сложить все цифры некоторого числа, затем все цифры только что найденной суммы и так продолжать достаточно далеко, то получится одна единственная цифра, которая носит название цифрового корня первоначального числа. Быстрее всего можно получить цифровой корень при помощи так называемого «процесса отбрасывания девяток». Допустим, например, что мы хотим найти цифровой корень числа 87345691. Сначала сложим цифры 8 и 7, будет 15; затем тут же складываем 5 и 1, получаем 6. Этот же результат получится, если вычесть или «исключить» из 16 девятку. Теперь прибавим 6 к следующей цифре, т. е. к тройке, получится 9. Девять плюс 4 даст 13 — число, которое после исключения девятки опять сводится к числу 4. Так же мы поступаем, пока не дойдем до последней цифры. Цифра 7, полученная этим путем, будет цифровым корнем заданного числа 87345691.
Большое количество фокусов с числами основано на операции, которая приводит к числу, кажущемуся случайным, хотя в действительности имеющим своим цифровым корнем девятку. Если производилась именно такая операция, можно предложить зрителю обвести кружком любую цифру ответа (за исключением нуля), а остальные цифры назвать в любом порядке.
После этого показывающий может объявить отмеченную цифру. Для этого ему нужно просто складывать называемые зрителем цифры, вычитая по ходу дела девятки; таким образом, при объявлении последней цифры он уже будет знать цифровой корень совокупности записанных им чисел. Если этим корнем окажется девятка, то была отмечена кружком эта же цифра. В остальных случаях, чтобы получить отмеченную цифру, нужно вычесть найденный цифровой корень из девятки. Вот некоторые из многих операций, которые приводят к числам, цифровой корень которых равен 9.
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.
«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.
Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…
Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.
Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.