Математические чудеса и тайны - [28]

Шрифт
Интервал

1. Напишите число (оно может быть сколь угодно большим) и переставьте его цифры в любом порядке; вычтите меньшее из этих чисел из большего.

2. Напишите какое-нибудь число, сложите все его цифры и вычтите полученную сумму из первоначального числа.

3. Напишите какое-нибудь число. Найдите сумму его цифр, умножьте ее на 9 и сложите результат с первоначальным числом.

4. Напишите какое-нибудь число, умножьте его на 9 или на число, кратное девяти. (Все числа, кратные девяти, имеют своим цифровым корнем девятку, и обратно, все числа, имеющие своим цифровым корнем девятку, кратны девяти.)

5. Напишите какое-нибудь число, сложите два числа, полученных из него путем любой перестановки цифр, и возведите полученный результат в квадрат.

Если вы хотите еще более затемнить метод получения чисел, цифровой корень которых равен 9, вы можете перед существенным в этом методе действием вводить произвольные числа и операции. Например, можно предложить зрителю записать количество мелочи в его кармане, умножить это число на число людей в комнате, прибавить к результату самый знаменательный год в его жизни и т. д. и, наконец, умножить результат на 9. Ясно, что только последнее действие имеет отношение к делу. Как только получено число, цифровой корень которого равен 9, вы можете предложить зрителю обвести какую-нибудь цифру результата кружком и показывать фокус, как это было описано выше.


Устойчивость цифрового корня

Возьмем какое-нибудь число, цифровой корень которого равен 9; образуем из него путем перестановки цифр второе число; переставляя снова цифры, получим третье число и будем так продолжать, пока не напишем столько чисел, сколько нам заблагорассудится. Сложив все эти числа, мы получим число, цифровой корень которого тоже будет равен девяти.

Аналогично, если число, имеющее своим цифровым корнем 9, умножить на целое число, то цифровой корень произведения будет равен 9.

Используя это свойство устойчивости корня относительно сложения и умножения, можно придумать много фокусов. Допустим, например, что у вас нашлась денежная бумажка, серийный номер которой имеет своим цифровым корнем девятку. Приберегите ее, пока вам не представится случай показать фокус. Попросите кого-нибудь написать несколько цифр наугад, затем, как бы вспомнив что-то, выньте денежную бумажку из кармана и предложите зрителю вместо этого лучше переписать ее серийный номер — удобный способ, поясняете вы, выбора произвольных чисел. Далее зритель несколько раз переставляет цифры, получая при этом все новые числа, складывает их, не показывая своих вычислений, умножает ответ на любое пришедшее ему в голову целое число и, наконец, обводит кружочком одну из цифр результата. После того как будут названы в любом порядке остальные цифры, вы сможете назвать ему отмеченное число.

Можно демонстрировать этот фокус и иначе, начав с чисел, входящих в дату демонстрации фокуса, т. е. порядкового номера месяца, дня месяца и года.

При записи года у вас будет выбор: либо брать две последние цифры, либо все четыре. Примерно два дня из каждых девяти (принадлежащих записи года) оказываются пригодными для образования числа, числовой корень которого равен девяти. В один из таких дней вы можете показать этот фокус. Допустим, что ваша дата 29 марта 1958 года. Попросите кого-нибудь записать ее в виде 29.3.58. Так как эта группа чисел имеет своим цифровым корнем девятку, вы можете продолжать далее, как в только что описанном фокусе с денежной бумажкой, или выбрать другую процедуру, не меняющую цифровой корень.


Отгадывание возраста

Интересный способ узнавания возраста некоторого лица начинается с того, что его просят выполнить ряд каких-нибудь действий, приводящих к числу, имеющему своим цифровым корнем девятку. Затем предлагают прибавить к полученному числу свой возраст и сообщить вам сумму. По этой сумме легко узнать возраст зрителя. Сначала найдите цифровой корень суммы. Затем прибавляйте к нему девятки до тех пор, пока полученное число не покажется вам наиболее близким к возрасту вашего собеседника. Это число и будет искомым возрастом. Допустим, например, что вы попросили зрителя написать любое число и умножить его на 9, после чего у него получилось 2826. К этому числу он добавил 40, свой возраст, и сообщил вам сумму: 2866. Цифровой корень этого числа равен 4; добавляя к четверке девятки, получим числа 13, 22, 31, 40, 49 и т. д., поскольку с точностью до 9 лет оценить возраст нетрудно, вы устанавливаете, что правильным ответом будет 40.

Бухгалтеры-ревизоры часто проверяют правильность сложения и умножения при помощи цифровых корней. Например, сложение можно проконтролировать так: сначала найти цифровой корень всей совокупности цифр, входящих в слагаемые, а затем цифровой корень суммы. Если последняя была найдена правильно, корни должны совпасть. Это обстоятельство можно использовать для фокуса следующим образом.


Фокус со сложением

Попросите кого-нибудь составить задачу на сложение, выписывая несколько многозначных чисел в столбик, одно под другим. Напрактиковавшись, вы сможете исключать девятки почти с такой же скоростью, с какой выписываются цифры, так что к концу составления задачи цифровой корень совокупности всех чисел будет вам известен. Затем вы поворачиваетесь спиной и просите произвести сложение. Если теперь зритель обведет кружком какую-нибудь цифру результата (не нуль), а остальные назовет в произвольном порядке, вы сможете объявить отмеченную цифру. Для этого нужно будет найти цифровой корень группы цифр, названных зрителем, а затем вычесть его из цифрового корня, найденного вначале (вы должны были его запомнить). Если второй корень окажется больше первого, добавьте перед вычитанием к первому корню девятку. Если корни окажутся одинаковыми, отмеченная цифра была, конечно, девяткой.


Еще от автора Мартин Гарднер
Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.


Есть идея!

Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.


Остров пяти красок

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Теория относительности для миллионов

Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.


Когда ты была рыбкой, головастиком - я...

      Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.


А ну-ка, догадайся!

Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.