Математические чудеса и тайны - [25]
Ответ будет таков: если не ограничивать число частей, то такие пространственные фигуры указать совсем нетрудно. Достаточно ясно это в случае куба.
Здесь внутренняя пустота может быть получена, однако вопрос о наименьшем числе частей, с которыми этого можно достигнуть, более сложен. Его заведомо можно изготовить из шести частей; не исключено, что этого можно добиться и с меньшим числом.
Такой куб можно эффектно демонстрировать следующим образом: вынуть его из ящичка, сделанного точно по кубу, разобрать на части, обнаружив при этом внутри шарик, снова сложить части в сплошной куб и показать, что он (без шарика) по-прежнему плотно заполняет ящик. Мы выскажем предположение, что должно существовать много таких фигур, как плоских, так и пространственных, к тому же отличающихся простотой и изяществом формы. Будущие исследователи этой любопытной области будут иметь удовольствие открыть их.
Глава седьмая. ГОЛОВОЛОМКИ С ОТВЛЕЧЕННЫМИ ЧИСЛАМИ
В этой главе мы рассмотрим головоломки с числами, для демонстрации которых не нужно никаких вспомогательных средств, за исключением карандаша и бумаги или, может быть, доски и куска мела.
Эти головоломки можно разбить на три основные категории:
а) головоломки, основанные на быстром счете;
б) головоломки с предсказанием результатов действий;
в) головоломки с отгадыванием чисел.
Существует обширная литература, посвященная первой из этих категорий. Однако быстрота вычислений в уме почти всегда демонстрируется как следствие совершенной техники счета, а не как фокус. Мы здесь лишь бегло коснемся четырех примеров быстрых вычислений, которые имеют большую популярность. Вот эти примеры:
1) нахождение дня недели, на который приходится какая-нибудь заданная дата;
2) ход шахматного коня;
3) построение волшебного квадрата по заданному числу (сумме);
4) быстрое извлечение кубического корня.
Быстрое извлечение кубического корня
Демонстрация фокуса с извлечением кубического корня начинается с того, что кого-нибудь из присутствующих просят взять любое число от 1 до 100, возвести его в куб и сообщить вслух результат. После этого показывающий мгновенно называет кубический корень из названного числа.
Для того чтобы показывать этот фокус, нужно сначала выучить кубы чисел от 1 до 10:
При изучении этой таблицы обнаруживается, что все цифры, на которые оканчиваются кубы, различны, причем во всех случаях, за исключением 2 и 3, а также 7 й 8, последняя цифра куба совпадает с числом, возводимым в куб. В исключительных же случаях последняя цифра куба равна разности между 10 и числом, возводимым в куб.
Покажем, как это обстоятельство используется для быстрого извлечения кубического корня. Пусть зритель, возводя некоторое число в куб, получил, например, 250 047. Последняя цифра этого числа 7, из чего немедленно следует, что последней цифрой кубического корня должно быть 3. Первую цифру кубического корня находим следующим образом. Зачеркнем последние три цифры куба (независимо от количества его цифр) и рассмотрим цифры, стоящие впереди, — в нашем случае это 250. Число 250 располагается в таблице кубов между кубами шестерки и семерки.
Меньшая из этих цифр — в нашем случае 6 — и будет первой цифрой кубического корня. Поэтому правильным ответом будет 63.
Чтобы лучше уяснить суть дела, приведем еще один пример. Пусть названо число 19 683. Его последняя цифра 3 указывает, что последней цифрой кубического корня будет 7. Зачеркивая последние три цифры, получаем число 19, которое лежит между кубом двойки и кубом тройки. Меньшим из этих чисел будет 2, поэтому искомым кубическим корнем будет 27.
Может показаться странным, но для извлечения целочисленных корней из степеней более высоких, чем третья, существуют более простые правила. Особенно легко находить корни пятой степени, потому что любое число и его пятая степень всегда оканчиваются одной и той же цифрой.
Сложение чисел Фибоначчи
Другой, несколько менее известный вычислительный фокус состоит в почти мгновенном сложении любых десяти последовательных чисел Фибоначчи (мы уже упоминали, что так называют ряд чисел, в котором каждое, начиная с третьего, представляет собой сумму двух предшествующих). Этот фокус демонстрируют так: показывающий просит кого-нибудь записать друг под другом два любых числа, какие он пожелает. Допустим для примера, что были выбраны 8 и 5.
Затем зритель должен сложить эти числа. Найденное таким образом третье число складывается со вторым (стоящим над ним), и получается четвертое число.
Этот процесс повторяют до тех пор, пока в вертикальном столбце не окажется десять чисел:
8
5
13
18
31
49
80
129
209
338
-
Во время записывания чисел показывающий стоит, повернувшись спиной к зрителям. Когда все числа будут записаны, он поворачивается, проводит под колонкой цифр черту и, не задумываясь, подписывает сумму этих чисел. Чтобы получить эту сумму, ему просто нужно взять четвертое число снизу и умножить его на 11 —операция, которую легко можно проделать в уме[25]). В нашем случае четвертым числом будет 80, поэтому в ответе получится число 80, взятое 11 раз, т. е. 880.
Фокусы с предсказанием результатов действий над числами и фокусы с отгадыванием чисел легко обратимы; под этим подразумевается, что фокус с предсказанием числа можно показывать как фокус с отгадыванием этого числа, и наоборот. Допустим, например, что показывающий знает наперед результат вычисления, который, как предполагает зритель, ему не может быть известен. Тогда показывающий может оформить фокус в виде предсказания, записав известный ему результат будущего вычисления на листке бумаги; в этом случае фокус следует рассматривать как фокус с предсказанием. Но этот же фокус он может оформить как «чтение мыслей» зрителя — после того как зритель закончит свои вычисления, — в этом случае фокус нужно отнести к категории фокусов с отгадыванием числа. (Третьим вариантом может быть оформление фокуса в виде молниеносного вычисления.) Большинству фокусов, о которых мы собираемся сейчас рассказать, можно придать любую из только что упомянутых форм; однако дальше мы не будем тратить понапрасну слов, останавливая на этом внимание зрителя.
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.
Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.
Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.
Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.
Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.