Математические чудеса и тайны - [23]
Если заштрихованную часть площяди второго прямоугольника поместить над незаштрихованной частью, два диагональных разреза сольются в одну большую диагональ. Переставляя теперь части А и В (как на рис. 61), мы получим второй прямоугольник большей площади.
Еще один вариант парадокса
При суммировании площадей частей перестановка треугольников В и С в верхней части рис. 63 приводит к кажущейся потере одной квадратной единицы.
Как читатель заметит, это происходит за счет площадей заштрихованных частей: на верхней части рисунка имеется 15 заштрихованных квадратиков, на нижней — 16. Заменяя заштрихованные куски двумя покрывающими их фигурами специального вида, мы приходим к новой, поразительной форме парадокса. Теперь перед нами прямоугольник, который можно разрезать на 5 частей, а затем, меняя их местами, составить новый прямоугольник, причем, несмотря на то, что его линейные размеры остаются прежними, внутри появляется отверстие площадью в одну квадратную единицу (рис. 64).
Возможность преобразования одной фигуры в другую, тех же внешних размеров, но с отверстием внутри периметра, основана на следующем. Если взять точку X точно в трех единицах от основания и в пяти единицах от боковой стороны прямоугольника, то диагональ через нее проходить не будет. Однако ломаная, соединяющая точку X с противоположными вершинами прямоугольника, будет так мало отклоняться от диагонали, что это будет почти незаметно.
После перестановки треугольников В и С на нижней половине рисунка части фигуры будут слегка перекрываться вдоль диагонали.
С другой стороны, если в верхней части рисунка рассматривать линию, соединяющую противоположные вершины прямоугольника, как точно проведенную диагональ, то линия XW будет чуть длиннее трех единиц. И как следствие этого второй прямоугольник будет несколько выше, чем кажется. В первом случае недостающую единицу площади можно считать распределенной с угла на угол и образующей перекрывание вдоль диагоналей. Во втором случае недостающий квадратик распределен по ширине прямоугольника. Как мы уже знаем из предыдущего, все парадоксы такого рода можно отнести к одному из этих двух вариантов построения. В обоих случаях неточности фигур настолько незначительны, что они оказываются совершенно незаметными.
Наиболее изящной формой этого парадокса являются квадраты, которые после перераспределения частей и образования отверстия остаются квадратами.
Такие квадраты известны в бесчисленных вариантах и с отверстиями в любое число квадратных единиц. Некоторые, наиболее интересные из них изображены на рис. 65 и 66.
Можно указать на простую формулу, связывающую размер отверстия с пропорциями большого треугольника. Три размера, о которых пойдет речь, мы обозначим через А, В к С (рис. 67).
Площадь отверстия в квадратных единицах равна разности между произведением А на С и ближайшим к нему кратным размера В. Так, в последнем примере произведение А и С равно 25. Ближайшее кратное размера В к 25 есть 24, поэтому отверстие получается в одну квадратную единицу. Это правило действует независимо от того, проведена ли настоящая диагональ или же точка X на рис. 67 нанесена аккуратно на пересечении линий квадратной сетки.
Если диагональ, как это и должно быть, вычерчивается как строго прямая линия или если точка X берется точно в одной из вершин квадратной сетки, то никакого парадокса не получается. В этих случаях формула дает отверстие размером в нуль квадратных единиц, обозначая этим, конечно, что отверстия нет вообще.
Вариант с треугольником
Вернемся к первому примеру парадокса (см. рис. 64). Заметим, что большой треугольник А не меняет своего положения, в то время как остальные части перемещаются. Поскольку этот треугольник не играет существенной роли в парадоксе, его можно вообще отбросить, оставляя только правый треугольник, разрезанный на четыре части. Эти части можно затем перераспределить, получая при этом прямоугольный треугольник с отверстием (рис. 68), будто бы равный исходному.
Составляя два таких прямоугольных треугольника катетами, можно построить много вариантов равнобедренных треугольников, подобных изображенному на рис. 69.
Так же как и в ранее рассмотренных парадоксах, эти треугольники можно строить двумя способами: либо проводить их боковые стороны строго прямолинейно, тогда точка X не попадет на пересечение линий квадратной сетки, либо помещать точку X точно в пересечение, тогда боковые стороны будут слегка выпуклыми или вогнутыми. Последний способ, кажется, лучше маскирует неточности чертежа. Парадокс покажется еще более удивительным, если на частях, составляющих треугольник, нанести линии квадратной сетки, подчеркивая этим самым, что части изготовлялись с необходимой аккуратностью.
Придавая нашим равнобедренным треугольникам различные размеры, можно добиться прироста или потери любого четного числа квадратных единиц.
Несколько типичных примеров дано на рис. 70, 71 и 72.
Составляя основаниями два равнобедренных треугольника любого из этих типов, можно построить самые различные варианты ромбического вида; однако они не добавят ничего существенно нового к нашему парадоксу.
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.