Математические чудеса и тайны - [11]

Шрифт
Интервал

После этого спички, изображавшие число 14, также кладутся в карман. В заключение зритель вынимает из коробка еще несколько спичек и зажимает их в кулаке.

Показывающий поворачивается лицом к зрителям, высыпает спички из коробки на стол и сразу называет число спичек, зажатых в кулаке.

Объяснение. Чтобы получить ответ, нужно вычесть из девятки число спичек, рассыпанных на столе[17]).


Кто что взял?

Еще один старинный фокус можно показать на 24 спичках, которые складываются кучкой рядом с тремя небольшими предметами, скажем, монетой, кольцом и ключиком. В фокусе просят принять участие трех зрителей (будем называть их условно 1, 2, 3).

Первый зритель получает одну спичку, второй — две, третий — три. Вы поворачиваетесь к ним спиной и просите каждого взять по вещице из лежащих на столе (обозначим их А, Б и В).

Предложите теперь зрителю, держащему предмет А, взять ровно столько спичек из числа оставшихся в кучке, сколько у него на руках. Зритель, взявши Б, пусть возьмет дважды столько спичек, сколько у него на руках. Последнему зрителю, взявшему предмет В, предложите взять четырежды столько спичек, сколько у него на руках. После этого пусть все три зрителя положат свои предметы и спички в карманы.

Обернувшись к зрителям и взглянув на оставшиеся спички, вы сразу же говорите каждому зрителю, какой предмет он взял.

Объяснение. Если остается одна спичка, то зрители 1, 2 и 3 взяли соответственно предметы А, Б и В (именно в таком порядке).

Если осталось 2 спички, то порядок предметов будет Б, А, В.

Если осталось 3 спички, то А, В, Б.

Если 4 спички, то кто-то ошибся, так как подобный остаток невозможен.

Если 5, то порядок предметов будет Б, В, А.

Если 6, то В, А, Б.

Если 7, то В, Б, А[18]).

Удобным мнемоническим средством будет список слов, согласные буквы которых (в порядке их написания) соответствуют начальным буквам названий трех выбранных предметов. Так, например, если показывать фокус с ложкой, вилкой и ножом, то можно предложить следующий список слов:

1. Л и В е Н ь.

2. Л е Н и В е ц.

3. В о Л а Н.

5. В а Н и Л ь.

6. Н е В о Л я.

7. Н а Л и В к а.

Здесь буква «Л» должна обозначать ложку, «В» — вилку, «Н» — нож. Буквы расположены в словах в порядке, соответствующем порядку предметов. Числа, стоящие перед словами, обозначают число оставшихся спичек.

Монеты

Монеты обладают тремя свойствами, которые делают их удобными для демонстрации математических фокусов. Их можно использовать как счетные единицы, они обладают определенным числовым значением и, наконец, у них есть лицевая и обратная стороны.

В каждом из следующих трех фокусов демонстрируется какое-нибудь одно из этих трех свойств.


Таинственная девятка

Дюжина (или больше) монет размещается на столе в форме девятки (рис. 2).



Показывающий стоит, повернувшись спиной к зрителям. Кто-нибудь из присутствующих задумывает число, большее числа монет в «ножке» девятки, и начинает отсчитывать монеты снизу вверх по ножке и, далее, по колечку против часовой стрелки, пока не дойдет до задуманного числа. Затем он снова считает от единицы до задуманного числа, начав с монеты, на которой остановился, но на этот раз по часовой стрелке и только вокруг колечка.

Под монету, на которой закончился счет, прячется маленький кусочек бумажки. Показывающий поворачивается к столу и сразу же поднимает эту монету.

Объяснение. Независимо от того, какое число было задумано, счет заканчивается всегда на одной и той же монете.[19] Сначала сами проделайте все это в уме с любым числом, чтобы узнать, какая это будет монета. При повторении фокуса добавьте к ножке несколько монет, тогда счет закончится уже в другом месте.


В какой руке монета?

Вот старинный фокус, в котором используется числовое значение монеты. Попросите кого-нибудь взять в один кулак гривенник, а в другой — копейку. Затем предложите умножить числовое значение монеты, лежащей в правом кулаке, на восемь (или любое другое четное число), а числовое значение другой монеты на пять (или любое нечетное число, какое вам захочется). Сложив эти два числа, зритель должен сказать вам, четное или нечетное число получилось. После этого вы говорите ему, какая монета у него в какой руке.

Объяснение. Если сумма четная, то в правой руке — копейка; если нечетная — гривенник.


Герб или «решетка»

Интересный фокус, основанный на разнице между двумя сторонами монеты, гербом и «решеткой», начинается с того, что на стол высыпается горсть мелочи. Показывающий отворачивается и просит кого-нибудь из зрителей заняться перевертыванием монет по одной наугад, произнося при каждом перевертывании «есть».

При этом зритель может переворачивать одну и ту же монету по нескольку раз. Затем зритель накрывает ладонью одну из монет. Показывающий поворачивается к столу и говорит, как лежит закрытая монета, кверху гербом или «решеткой».

Объяснение. Перед тем как отвернуться, вам нужно сосчитать число гербов. При каждом слове «есть» прибавляйте к этому числу единицу. Если последняя сумма четная, то число гербов, после того как зритель закончит перевертывание монет, тоже будет четным; если сумма нечетная, то нечетным.

Посмотрев на открытые монеты, совсем нетрудно определить, как лежит монета под ладонью, кверху гербом или «решеткой».


Еще от автора Мартин Гарднер
Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.


Есть идея!

Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.


Теория относительности для миллионов

Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.


Когда ты была рыбкой, головастиком - я...

      Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.


Обман и чудачества под видом науки

Состояние лженауки на середину двадцатого века с точки зрения науки США  .


А ну-ка, догадайся!

Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.


Рекомендуем почитать
Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


Том 40. Математическая планета. Путешествие вокруг света

В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.


Том 3. Простые числа. Долгая  дорога к бесконечности

Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.


Том 18. Открытие без границ. Бесконечность в математике

Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.


Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление

Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.


Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.