Математические чудеса и тайны - [9]
Ряд из тринадцати косточек
Вот еще один любопытный фокус с домино. Для него нужны 13 косточек, которые укладываются в ряд лицевой стороной вниз. В отсутствие показывающего, кто-нибудь из зрителей передвигает по одной любое число косточек (от одной до двенадцати) с одного конца ряда на другой. После этого показывающий возвращается в комнату, открывает одну косточку, и количество очков на ней оказывается равным числу перемещенных косточек. Фокус можно показывать сколько угодно раз.
Объяснение. Косточки, конечно, подбираются специальным образом. Суммы очков на них должны последовательно равняться всем целым числам от 1 до 12. Тринадцатой будет двойная пустышка.
Они выставляются в порядке возрастания, начиная с единицы на левом конце. Справа ряд замыкается двойной пустышкой. Перед уходом из комнаты показывающий демонстрирует, как нужно перемешать косточки; передвинув несколько штук слева направо, он должен сообразить, сколько очков теперь на самой левой косточке. Возвратившись, он мысленно считает до этого числа, начиная справа. Если на левой косточке было, например, 6 очков, ему нужно считать справа до шестой косточки. Косточку, на которую придется это число, он открывает. Если она случайно окажется двойной пустышкой, ей приписывается значение 13.
Повторять этот фокус совсем просто. Показывающий должен сосчитать про себя, сколько косточек осталось от открытой до крайней левой, сообразить, сколько на последней очков, и запомнить это число перед уходом из комнаты.
Любопытная ситуация возникает, если кто-нибудь вздумает подшутить над показывающим и не переставит ни одной косточки; в этом случае откроется двойная пустышка.
Календари
Существует много интересных фокусов с использованием табель-календаря. Вот некоторые наиболее интересные из них.
Таинственные квадраты
Показывающий стоит, повернувшись спиной к зрителям, а один из них выбирает на помесячном табель-календаре любой месяц и отмечает на нем какой-нибудь квадрат, содержащий 9 чисел. Теперь достаточно зрителю назвать наименьшее из них, чтобы показывающий тут же, после быстрого подсчета, объявил сумму этих девяти чисел.
Объяснение. Показывающему нужно прибавить к названному числу 8 и результат умножить на 9[12]).
Фокус с отмеченными датами
Фокус начинается так. Зрителю предлагают открыть помесячный табель-календарь на любом месяце и обвести кружком по своему выбору по одной дате в каждом из пяти столбиков. (В том случае, когда числа располагаются в шести столбиках, что бывает весьма редко, шестой столбик не принимают во внимание.)
При этом показывающий стоит спиной к присутствующим.
Все еще не оборачиваясь, он спрашивает: «Сколько у Вас обведено понедельников?», затем: «Сколько вторников?» и т. д., перебирая все дни недели. После седьмого и последнего вопроса показывающий объявляет сумму цифр, обведенных кружочками.
Объяснение. Сумма чисел в строке, которая начинается первым числом месяца, всегда равна 75 (за исключением февраля не високосного года). Каждое отмеченное число в следующей строке увеличивает эту сумму на 1, в следующей за ней строке на 2 и т. д.; каждое отмеченное число в предыдущей строке уменьшает упомянутую сумму на 1, в предшествующей ей строке на 2 и т. д. Пусть, например, первое число месяца приходится на четверг и обведены один понедельник, один четверг и три субботы; показывающий производит в уме вычисление:
75 + 3х2–1х3 = 78
и объявляет полученный результат.
Разумеется, показывающий должен знать заранее, на какой день приходится первое число выбранного зрителем месяца.
Предсказание
На каком-нибудь листке помесячного табель-календаря зритель заключает в квадрат шестнадцать чисел. Показывающий после беглого взгляда на обведенную фигуру записывает предсказание. Затем зритель выбирает в этом квадрате четыре числа, по видимости произвольных, но с соблюдением следующего правила. Первое из чисел выбирается (обводится кружочком) совершенно произвольно. Затем вычеркиваются все числа, находящиеся в той же строчке и в том же столбце, что и только что обведенное число. В качестве второго числа зритель может обвести кружочком любое число, оставшееся незачеркнутым. После этого он вычеркивает все числа, оказавшиеся в одной и той же строчке и в одном и том же столбце со вторым обведенным числом. Так же выбирается третье число, а соответствующие строчка и столбец вычеркиваются.
В результате этих операций останется незачеркнутым одно-единственное число. Его зритель также обводит кружочком. Если теперь взять сумму четырех отмеченных нами чисел, то она окажется в точности равной предсказанному числу[13]
Объяснение. Показывающий замечает два числа, находящихся на двух диагонально противоположных углах квадрата. Какая из двух возможных пар это будет — безразлично. Чтобы получить ответ, нужно сложить эти два числа и найденную сумму удвоить.
Более простой фокус, основанный на этом же принципе и не требующий табель-календаря, можно демонстрировать так. Начертите квадратную сетку из 16 клеток, подобную шахматной доске, и перенумеруйте клетки от 1 до 16 в естественном порядке. Если теперь предложить зрителю выбрать четыре числа при помощи того процесса, который описывался выше, и сложить их, то во всех случаях он будет получать одну и ту же сумму, а именно 34. Этот принцип можно демонстрировать на квадратах с любым числом клеток.
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.
Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.