Математические чудеса и тайны - [10]
Часы
Угадывание задуманного числа на циферблате
Зритель задумывает какое-нибудь число от 1 до 12. Показывающий начинает притрагиваться кончиком карандаша к числам ни циферблате, делая это, по-видимому, в совершенно произвольном порядке. В это время зритель считает про себя, начиная с задуманного числа до двадцати, причем так, чтобы на каждое прикосновение показывающего к часам приходилось одно число. Дойдя до 20, он произносит «стоп». И (странное совпадение!) карандаш оказывается в этот момент как раз на задуманном числе.
Объяснение. Первые восемь прикосновений действительно делаются совершенно наугад. Однако уже на девятом показывающий должен обязательно коснуться 12 и с этого момента перебирать часы строго подряд в направлении, обратном движению часовых стрелок. Когда зритель произнесет слово «стоп», кончик карандаша будет указывать на требуемое число[14]).
Совсем не обязательно просить зрителя прекращать счет именно на 20, вы можете предложить ему самому выбрать число для окончания счета: нужно лишь, чтобы оно было больше 12. Конечно, зритель должен предупредить вас, на каком числе он собирается остановиться. Отнимите от этого числа 32, и полученный остаток укажет, сколько прикосновений нужно сделать наугад, прежде чем притронуться к 12 и начать двигаться последовательно против часовой стрелки.
Принцип «последовательного счета», с которым мы только что встретились, применяется и во многих других фокусах. Например, такой фокус. Присутствующие называют 16 слов, каждое из которых пишется на отдельном листе плотной бумаги, обратные стороны этих листков помечают буквами от «А» до «Р» (пропуская «неудобные» буквы «Ё» и «Й»). Листки перемешиваются на столе. Показывающий поворачивается спиной, а кто-нибудь из присутствующих выбирает один из листков, запоминает слово и букву на нем, а затем смешивает с остальными. Показывающий собирает листки и раскрывает их веером так, чтобы присутствующие видели слова. Потом он начинает бросать листки на стол по одному без видимой системы, зритель же в это время называет про себя буквы в алфавитном порядке, начиная с той, которой помечено задуманное им слово. Дойдя до «Р», он произносит «стоп». На листке, который как раз в этот момент бросает на стол показывающий, оказывается задуманное слово.
Чтобы этот фокус получился, нужно бросать листки на стол в порядке, обратном алфавитному, начиная с буквы «Р».
Фокус с часами и игральной костью
Вот еще один фокус с часами. Показывающий отворачивается от стола, а в это время зритель бросает кость и задумывает какое-нибудь число (желательно не большее 50, чтобы не затягивать фокус). Допустим, это 19. Далее зритель начинает притрагиваться к цифрам на циферблате, начав с числа, указанного игральной костью, и двигаясь по часовой стрелке.
Число, на которое придется последнее 19-е касание, записывается. Затем он снова делает 19 прикосновений, но уже в направлении, обратном движению часовой стрелки, отсчитывая их с той же цифры, что и в предыдущий раз. Число, на которое придется последнее прикосновение, опять записывается. Оба записанных числа складываются, и сумма их называется вслух. После этого показывающий сразу называет число, выпавшее на игральной кости[15]).
Объяснение. Если названная сумма меньше или равна 12, то для получения ответа нужно просто разделить ее на 2. Если же сумма больше 12, то показывающий сначала вычитает из нее 12, а затем уже делит остаток на 2.
Спички
Существует много математических фокусов, в которых мелкие предметы используются просто как счетные единицы. Сейчас мы опишем несколько фокусов, для которых особенно удобны спички, хотя годятся и другие мелкие предметы, например монеты, камешки или листочки бумаги.
Три кучки спичек
Показывающий поворачивается спиной к аудитории, а кто-нибудь из присутствующих кладет на стол три кучки спичек так, чтобы число спичек в кучках было одинаковым и большим трех в каждой. Зритель называет какое-нибудь число от 1 до 12. Показывающий просит зрителя перераспределить некоторым (специальным) образом спички в кучках. При этом, хотя показывающий и не знал первоначального числа спичек в кучках, в средней кучке оказывается заданное количество спичек.
Объяснение. Вначале зрителя просят взять по три спички из крайних кучек и перенести их в среднюю. Затем он должен сосчитать оставшиеся спички в одной из крайних кучек, взять это число спичек из средней кучки и перенести их в любую крайнюю. Так как после этого в средней кучке всегда остается 9 спичек[16]), то теперь уже совсем просто получить в ней заданное число спичек (для этого потребуется только одна передвижка).
Сколько спичек зажато в кулаке?
На аналогичном принципе основан следующий фокус, для показа которого необходим коробок с 20 спичками. Показывающий, повернувшись спиной к зрителю, просит его вытянуть из коробка несколько спичек (не больше десяти) и положить в карман. Затем зритель пересчитывает оставшиеся в коробке спички. Допустим, их 14. Это число он «выписывает» на столе следующим образом: единица изображается одной спичкой, положенной слева, а четверка — четырьмя спичками, положенными несколько правее. Эти пять спичек берутся из числа оставшихся в коробке.
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.