Математические чудеса и тайны - [13]
И эта оставшаяся спичка обязательно оказывается повернутой!
Этот фокус можно повторять много раз, и он всегда будет удаваться. Его можно показывать на любых четырех предметах, поэтому мы описываем его в этом разделе, а не там, где фокусы со спичками.
Объяснение. Положение спичек или предметов, расположенных на столе, обозначьте цифрами 1, 2, 3 и 4. Попросите кого-нибудь указать один из этих предметов. Прежде чем вы повернетесь к зрителям спиной, запомните его положение. Теперь попросите сделать пять перестановок, меняя при этом местами выбранный предмет с соседним. Если был указан предмет, находящийся на одном из концов, то, конечно, первую перестановку можно выполнить единственным образом; если же был указан не крайний предмет, то его можно переставить либо с правым соседним предметом, либо с левым.
Поскольку зритель не сообщает показывающему, как он меняет местами предметы, может возникнуть представление, что после данного числа перестановок выбранный предмет может занять любое место в ряду.
Однако это не так. Например, если указанный предмет занимал 2-е или 4-е (т. е. четное) место, то после пяти перестановок он может оказаться либо на 1-м, либо на 3-м (т. е. нечетном) месте. Наоборот, если мы начнем с 1-го или 3-го места, то придем ко 2-му или 4-му.
При нечетном числе перестановок так будет получаться всегда. В нашем примере мы предложили сделать пять перестановок, но можно было назначить семь или, скажем, двадцать девять (любое нечетное число) перестановок. Мы могли бы также задать четное число перестановок, но в этом случае выбранный предмет очутился бы на четном месте, если он был на четном вначале, или на нечетном, если на таком же месте он был вначале. Вопрос о числе перестановок может решать и сам зритель, хотя, конечно, это число он должен вам сообщить. Можно также, переставляя предметы, произносить по буквам свое имя и фамилию.
После того как перестановки будут закончены, вы должны указать зрителю, в каком порядке он должен поштучно убирать. три предмета, чтобы на столе остался четвертый выбранный. Это нужно делать так: Если вам известно, что указанный предмет может оказаться после окончания передвижек на 1-м или 3-м месте, то сначала попросите убрать предмет, находящийся на 4-м месте. Затем попросите зрителя поменять местами выбранный предмет с соседним. В результате этой последней перестановки указанный вам предмет всегда окажется средним из трех оставшихся. Теперь уже не составляет никакого труда оставить на столе выбранный зрителем предмет.
Если же, наоборот, конечное положение указанного предмета может быть 2-м или 4-м, то сначала следует убрать предмет, находящийся на 1-м месте, а все остальное происходит так же.
Глава третья. ТОПОЛОГИЧЕСКИЕ ГОЛОВОЛОМКИ
В предыдущих главах мы рассматривали только такие фокусы, метод показа которых носит математический характер. Мы не занимались фокусами, в которых только конечный результат может быть объяснен при помощи математики. Если, например, показывающий, играя в карты, набирает нужное число взяток, заранее расположив карты в колоде соответствующим образом, то этот эффект можно считать математическим в том смысле, что произвольное расположение карт в колоде каким-то непостижимым образом стало упорядоченным, но мы такой фокус все же не будем называть математическим, поскольку показ его основан не на математике, а просто на незаметной подмене одной колоды другой.
Подобный подход мы применим и к отбору фокусов для настоящей главы. Очень многие «таинственные» фокусы можно назвать в широком смысле топологическими, так как при их показе как будто нарушаются элементарные топологические законы. Один из самых старинных фокусов такого рода известен под названием «соединенных колец»: шесть или более больших железных колец таинственным образом сцепляются и расцепляются — явление, кажущееся совершенно невозможным в силу свойств обычных замкнутых кривых линий. Другие фокусы, в которых кольца снимаются или надеваются на веревку или палку, оба конца которой зажаты в руках зрителя, можно было бы объяснить таинственными соединениями или разрывами цепи, поскольку зритель, держащий веревку, представляет собой замкнутую линию, через которую как-то проходит наше кольцо. Однако большинство таких фокусов основано на механических методах, небольшой ловкости рук или других «таинственных» приемах, ничего общего не имеющих с топологией.
Более близок к тому, что может быть названо топологической головоломкой, фокус, который известен под названием «падающее кольцо». Это цепочка колец, связанных друг с другом довольно странным образом. При надлежащих действиях верхнее кольцо как будто падает по цепи, пока, наконец, не оказывается странным образом соединенным с самым нижним кольцом. Этот фокус получается сам собой, и при его показе не возникает никаких затруднений, если не считать того, что кольца должны быть соединены так, чтобы они образовали некоторую сложную и довольно любопытную топологическую структуру.
«Падение» кольца в этом фокусе является лишь оптической иллюзией, объясняемой механически и не связанной с топологическими законами.
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.
Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.