Истина и красота: Всемирная история симметрии - [8]
Эти обозначения нам так привычны, что мы забываем, как хитро они устроены — и как трудно в них разобраться, когда мы видим их первый раз. Ключевое свойство, на котором основано все остальное, состоит вот в чем: численное значение какого-либо символа, например 8, зависит от того, где он располагается по отношению к другим символам. Символ «8» не имеет постоянного значения, не зависящего от контекста. В числе, которое выражает скорость света, цифра 8 непосредственно перед десятичной запятой действительно означает «восемь». Но другая 8 в том же числе означает «восемьсот».
Было бы исключительно неприятно иметь систему письма, в которой значение буквы зависело бы от ее местоположения в слове[3]. Представим себе, например, во что превратился бы процесс чтения, если бы две буквы «а» в слове «алфавит» имели бы полностью различные значения. Однако позиционная система для обозначения чисел настолько удобна и эффективна, что нам трудно себе представить, как можно пользоваться каким-либо другим способом.
Но не всегда дело обстояло таким образом. Нашим современным обозначениям не более 1500 лет, а в Европе их впервые ввели в употребление лишь немногим более 800 лет назад. Даже сегодня для одних и тех же десятичных цифр в различных культурах используются различные символы — достаточно взглянуть на любую египетскую денежную банкноту. Представители древних культур записывали числа множеством самых разнообразных и необычных способов. Вероятно, лучше всего нам известна римская система, в которой число 2006 имеет вид MMVI. В древней Греции то же число имело бы вид βζ.>{1} Вместо наших 2, 20, 200 и 2000 римляне писали II, XX, CC и ММ, а греки — β, κ, σ и β.
Вавилоняне были самой ранней из известных нам культур, использовавших нечто родственное нашим позиционным обозначениям. Однако с одним важным отличием. В десятичной системе при каждом смещении цифры на одну позицию влево ее численное значение умножается на десять. Так, 20 есть 2, умноженное на десять, а 200 — 20, умноженное на десять. В вавилонской же системе каждое смещение влево приводило к умножению числа на шестьдесят. Так, 20 означало бы 2 умножить на 60 (120 в наших обозначениях), а 200 — 2 умножить на 60 умножить на 60 (7200 в наших обозначениях). Разумеется, они не использовали тот же символ «2»; число два они записывали, повторяя дважды тонкий вертикальный клинообразный символ, как показано на рисунке. Повторяя этот знак нужное число раз, они записывали числа от одного до девяти. Для чисел, превосходящих девять, они добавляли другой символ — повернутый клин, который обозначал число десять; повторяя этот символ соответствующее число раз, они записывали числа двадцать, тридцать, сорок и пятьдесят. Так, например, наше число 42 изображалось четырьмя повернутыми клиньями, за которыми шли два вертикальных клина.
Вавилонские числительные с основанием 60.
По причинам, о которых остается только догадываться, эта система прекращалась на 59. Вавилоняне не рисовали шесть повернутых клиньев, чтобы составить 60. Вместо этого они снова использовали вертикальный узкий клин, который ранее обозначал единицу, но теперь ему придавалось значение «один раз по шестьдесят». Два таких клина означали 120. Но они могли также обозначать и «два». Какое именно значение имелось в виду, требовалось понимать из контекста, а также из расположения символов друг относительно друга. Например, если имелось два вертикальных клина, потом пробел, а потом снова два вертикальных клина, то первая группа означала сто двадцать, а вторая — два, подобно тому как символы «2» в нашей записи 22 означают двадцать и два.
Этот метод распространялся и на значительно большие числа. Вертикальный клин мог означать 1, или 60, или 60×60 = 3600, или 60×60×60 = 216 000, и так далее. Три нижние группы на рисунке обозначают число 60×60 + 3×60 + 12, которое мы бы записали как 3792. Большая проблема здесь состоит в том, что обозначения допускают некоторые неоднозначности. Если перед вашими глазами одни только вертикальные клинья, то означают ли они 2, 60×2 или 60×60×2? Означает ли повернутый клин, за которым идут два вертикальных, 12×60 + 2, или 12×60×60 + 2, или даже 10×60×60 + 2×60? Ко времени Александра Македонского вавилоняне устранили эти неоднозначности за счет использования пары небольших диагональных клиньев для указания пустой позиции при записи числа; фактически они изобрели символ для нуля.
Почему вавилоняне использовали шестидесятиричную систему, а не привычную нам десятичную? На их выбор могло повлиять полезное свойство числа 60: у него много разных делителей. Оно нацело делится на числа 2, 3, 4, 5 и 6. Оно также делится на 10, 12, 15, 20 и 30. Это свойство оказывается довольно удобным, когда дело доходит до деления вещей, будь то зерно или земля, на нескольких людей.
Чашу весов вполне мог склонить вавилонский метод измерения времени. По-видимому, вавилонцы находили удобным делить год на 360 дней, несмотря на то что они были превосходными астрономами и знали, что число 365 выражает длину года точнее, a 365>1/>4 — еще точнее. Их слишком сильно завораживало арифметическое соотношение 360 = 6×60. В действительности в том, что касалось указания времени, вавилоняне забывали о правиле, что перенесение символов на одну позицию налево означает умножение на шестьдесят, а вместо этого умножали на шесть, так что выражение, которое должно было бы обозначать 3600, в действительности интерпретировалось как 360.
Важно не только читать хорошие книги, но и писать таковые… Из-за нарушения этого правила волшебники Незримого университета вынуждены вновь спасать несчастную вселенную Круглого мира.XIX век, Англия. Некий человек по имени Чарльз Дарвин пишет книгу «Теология видов», которая не только становится бестселлером, но и тормозит научный прогресс более чем на век, что неизбежно вызовет новый ледниковый период в ближайшие столетия. Ну и как тут не вмешаться аркканцлеру Чудакулли и его коллегам?Третья книга научно-популярного цикла, созданного Терри Пратчеттом в соавторстве с Йеном Стюартом и Джеком Коэном, рассказывает читателю о теории эволюции и ее влиянии на развитие всего человечества.Впервые на русском языке!
Добро пожаловать в XXIII век!В эпоху, когда человечество наконец-то «освоилось» в Солнечной системе.На юпитерианскую луну Каллисто, где космоархеологи нашли погребенное под многотысячелетними слоями льдов… устройство? Или все-таки СУЩЕСТВО?То, что привезли на Землю. То, что однажды… включилось? Или все-таки – ожило?И тогда гигантская комета, летевшая к Юпитеру, вдруг изменила свою траекторию – и понеслась к Земле…Что это – нелепое стечение обстоятельств? Неизвестный космический фактор? Или – непреложное доказательство существования на Юпитере разумной жизни?И теперь космический флот Земли отправляется к Юпитеру…
Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки — раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук.
В двух мирах – Плоском и Круглом – вновь переполох! Омниане узнали о Круглом мире и хотят его контролировать. Само его существование – это издевательство над их религией. Однако волшебники Незримого университета придерживаются совсем другой точки зрения. В конце концов, они создали этот мир!В четвертой книге цикла «Наука Плоского мира» Терри Пратчетт, профессор Йен Стюарт и доктор Джек Коэн создают мозгодробительную смесь литературы, ультрасовременной науки и философии в попытке ответить на ДЕЙСТВИТЕЛЬНО большие вопросы – на этот раз о Боге, Вселенной и, честно говоря, Обо Всем.Впервые на русском языке!
Когда магический эксперимент выходит из-под контроля, волшебники Незримого Университета случайно создают новую Вселенную. Внутри они обнаруживают планету, которую называют Круглым Миром. Круглый Мир — это удивительное место, где логика берет верх над волшебством и здравым смыслом.Как Вы уже, наверное догадались, это наша Вселенная, а Круглый Мир — это Земля. Вместе с волшебниками, наблюдающими за развитием своего случайного творения, мы проследим историю Вселенной, начиная с исходной сингулярности Большого Взрыва и заканчивая эволюцией жизни на Земле и за ее пределами.Переплетая оригинальный рассказ Терри Пратчетта с главами, написанными Джеком Коэном и Йеном Стюартом, книга дает замечательную возможность посмотреть на нашу Вселенную глазами волшебников.
Как математические модели объясняют космос? Иэн Стюарт, лауреат нескольких премий за популяризацию науки, представляет захватывающее руководство по механике космоса в пределах от нашей Солнечной системы и до всей Вселенной. Он описывает архитектуру пространства и времени, темную материю и темную энергию, рассказывает, как сформировались галактики и почему взрываются звезды, как все началось и чем все это может закончиться. Он обсуждает параллельные вселенные, проблему тонкой настройки космоса, которая позволяет жить в нем, какие формы может принимать внеземная жизнь и с какой вероятностью наша земная может быть сметена ударом астероида. «Математика космоса» — это волнующий и захватывающий математический квест на деталях внутреннего мира астрономии и космологии. Издание подготовлено в партнерстве с Фондом некоммерческих инициатив «Траектория».
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.