Истина и красота: Всемирная история симметрии - [10]
| 870>1/>4 | |
| Это квадрат числа 29;30 | 870>1/>4 = (29>1/>2)×(29>1/>2) |
| Теперь прибавь 0;30 к 29;30 | 29>1/>2 + >1/>2 |
| Результат равен 30, стороне квадрата | 30 |
Самый сложный шаг — четвертый, где требуется найти число (равное 29>1/>2), квадрат которого составляет 870>1/>4. Число 29>1/>2 есть квадратный корень из 870>1/>4. Квадратные корни — основное средство для решения квадратных уравнений, а когда математики попытались применить подобные же методы к решению более сложных уравнений, и родилась современная алгебра.
Ниже мы интерпретируем эту задачу, используя современные алгебраические обозначения. Но важно понимать, что вавилоняне не использовали алгебраические формулы как таковые. Вместо этого под видом типичного примера они описывали конкретную процедуру, которая и приводила к ответу. Но ясно, что они осознавали, что в точности та же самая процедура сработает, если взять другие числа.
Коротко говоря, они умели решать квадратные уравнения, и именно их метод — хотя и не в том самом виде, как они его выражали — мы используем по сей день.
Как вавилоняне смогли открыть свой метод решения квадратных уравнений? Прямых свидетельств у нас нет, но кажется правдоподобным, что они натолкнулись на него, рассуждая геометрически. Возьмем более простую задачу, которая приводит к тому же рецепту. Предположим, что мы нашли табличку, на которой говорится: «Найти сторону квадрата, если площадь плюс две стороны равна 24». В более современных терминах — квадрат неизвестного плюс удвоенное неизвестное равно 24. Это можно представлять себе так, как показано на рисунке.
Геометрическое представление квадратного уравнения.
Здесь вертикальный размер квадрата и прямоугольника слева от знака равенства соответствует неизвестному, а малые квадраты имеют единичный размер. Если разбить высокий прямоугольник пополам и приклеить два полученных куска к квадрату, то получится фигура, имеющая вид квадрата с одним недостающим углом. Рисунок подсказывает, что надо «дополнить квадрат» путем прибавления к обеим частям уравнения недостающего угла.
Дополнение квадрата.
Теперь у нас имеется квадрат слева и 25 единичных квадратов справа. Соберем их в квадрат 5×5:
Теперь решение очевидно: неизвестное плюс один при возведении в квадрат дает квадрат числа пять. Извлекая квадратные корни, находим, что неизвестное плюс один равно пяти; не надо быть гением, чтобы найти неизвестное: оно равно четырем.
Такое геометрическое описание в точности соответствует вавилонскому методу решения квадратных уравнений. В более сложном примере из табличек используется в точности тот же рецепт. На табличке лишь приведен рецепт, но не сказано, откуда он взялся, однако геометрическая картина согласуется и с другими косвенными свидетельствами.
Глава 2
Имя на устах
Многие из величайших математиков древнего мира жили в египетском городе Александрия, расположенном между пятью крупными оазисами, выдающимися в пустыню к западу от Нила. Один из оазисов — Сива — был известен своими соляными озерами, которые наполняются за зиму и высыхают в летнюю жару. Соль проникла в почву и стала главным источником головной боли для археологов, поскольку она пропитывает древние камни, и остающийся на них соляной налет медленно разрушает остовы зданий.
Наиболее популярное туристическое место в Сиве — Агурми, в прошлом храм, посвященный богу Амону. Божественность Амона была столь велика, что основной его аспект представляет собой нечто абстрактное, но затем его стали отождествлять с более осязаемой сущностью — происхождением бога Ра, Солнцем. Построенный во времена 26-й династии храм Амона в Сиве был обителью знаменитого оракула, известного, в частности, в связи с двумя крупными историческими событиями.
Первое — это гибель армии Камбиса II, персидского царя, покорившего Египет. Передают, что в 523 году до Р.Х., намереваясь использовать оракула храма Амона для утверждения своего правления, Камбис отправил в Западную пустыню военный отряд. Армия дошла до оазиса Бахарийа, но погибла в песчаной буре по дороге к Сиве. Многие египтологи склонялись к мысли, что «потеря армии Камбиса» может оказаться мифом, но в 2000 году группа исследователей из Каирского университета Хелван, занимавшаяся поисками нефти, нашла в том районе куски ткани, металла и человеческие останки, которые могли быть останками погибшей армии.
Второе событие, произошедшее двумя столетиями позже, представляет собой исторический факт — это судьбоносный визит в Сиву Александра Македонского, имевшего перед собой в точности ту же цель, что и Камбис.
Александр был сыном царя Филиппа II Македонского. Дочь Филиппа Клеопатра вышла замуж за эпирского царя Александра, причем во время свадебной церемонии Филиппа убили. Убийцей мог быть любовник Филиппа Павсаний, огорченный тем, что царь никак не реагировал на жалобы, с которыми Павсаний к нему обращался. Убийство могло оказаться и результатом персидского заговора, инспирированного Дарием III. Если это так, то персы получили сполна, поскольку македонская армия немедленно провозгласила царем Александра, и 20-летний монарх совершил знаменитый поход, завоевав большую часть известного тогда мира. По пути, в 332 году до Р.Х., он без единой битвы покорил Египет.
Важно не только читать хорошие книги, но и писать таковые… Из-за нарушения этого правила волшебники Незримого университета вынуждены вновь спасать несчастную вселенную Круглого мира.XIX век, Англия. Некий человек по имени Чарльз Дарвин пишет книгу «Теология видов», которая не только становится бестселлером, но и тормозит научный прогресс более чем на век, что неизбежно вызовет новый ледниковый период в ближайшие столетия. Ну и как тут не вмешаться аркканцлеру Чудакулли и его коллегам?Третья книга научно-популярного цикла, созданного Терри Пратчеттом в соавторстве с Йеном Стюартом и Джеком Коэном, рассказывает читателю о теории эволюции и ее влиянии на развитие всего человечества.Впервые на русском языке!
В двух мирах – Плоском и Круглом – вновь переполох! Омниане узнали о Круглом мире и хотят его контролировать. Само его существование – это издевательство над их религией. Однако волшебники Незримого университета придерживаются совсем другой точки зрения. В конце концов, они создали этот мир!В четвертой книге цикла «Наука Плоского мира» Терри Пратчетт, профессор Йен Стюарт и доктор Джек Коэн создают мозгодробительную смесь литературы, ультрасовременной науки и философии в попытке ответить на ДЕЙСТВИТЕЛЬНО большие вопросы – на этот раз о Боге, Вселенной и, честно говоря, Обо Всем.Впервые на русском языке!
Как математические модели объясняют космос? Иэн Стюарт, лауреат нескольких премий за популяризацию науки, представляет захватывающее руководство по механике космоса в пределах от нашей Солнечной системы и до всей Вселенной. Он описывает архитектуру пространства и времени, темную материю и темную энергию, рассказывает, как сформировались галактики и почему взрываются звезды, как все началось и чем все это может закончиться. Он обсуждает параллельные вселенные, проблему тонкой настройки космоса, которая позволяет жить в нем, какие формы может принимать внеземная жизнь и с какой вероятностью наша земная может быть сметена ударом астероида. «Математика космоса» — это волнующий и захватывающий математический квест на деталях внутреннего мира астрономии и космологии. Издание подготовлено в партнерстве с Фондом некоммерческих инициатив «Траектория».
Книга «Часы Дарвина» повествует о викторианском обществе, которого никогда не было — ну, однажды вмешались волшебники и его не стало..
Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки — раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук.
Добро пожаловать в XXIII век!В эпоху, когда человечество наконец-то «освоилось» в Солнечной системе.На юпитерианскую луну Каллисто, где космоархеологи нашли погребенное под многотысячелетними слоями льдов… устройство? Или все-таки СУЩЕСТВО?То, что привезли на Землю. То, что однажды… включилось? Или все-таки – ожило?И тогда гигантская комета, летевшая к Юпитеру, вдруг изменила свою траекторию – и понеслась к Земле…Что это – нелепое стечение обстоятельств? Неизвестный космический фактор? Или – непреложное доказательство существования на Юпитере разумной жизни?И теперь космический флот Земли отправляется к Юпитеру…
Что есть случайность? Этим вопросом мы задаемся, сталкиваясь с неожиданными и, казалось бы, невозможными совпадениями. Однако с математической точки зрения шансы многих событий гораздо выше, чем любой из нас мог бы подумать. В книге «Игра случая» математик Джозеф Мазур открывает необыкновенный мир теории вероятности, описывая сложные математические понятия простым, веселым языком. Как объяснить то, что книгу из школьной библиотеки с вашей подписью вы вдруг обнаруживаете на букинистическом развале в другой части света? Могут ли присяжные быть абсолютно уверенными в результатах анализа ДНК, найденного на месте преступления? Почему Аврааму Линкольну снились вещие сны? На многих примерах реальных событий Мазур показывает нам неотвратимость случайных событий.
Галилео Галилей заметил, что Вселенная — это книга, написанная на языке математики. Макс Тегмарк полагает, что наш физический мир в некотором смысле и есть математика. Известный космолог, профессор Массачусетского технологического института приглашает читателей присоединиться к поискам фундаментальной природы реальности и ведёт за собой через бесконечное пространство и время — от микрокосма субатомных частиц к макрокосму Вселенной.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.
Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.
Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.