Истина и красота: Всемирная история симметрии - [12]

Шрифт
Интервал

Это не означает, что Эвклид сам открыл все математическое содержание, которое вы найдете на страницах его книги. Он собрал воедино и упорядочил значительную часть древнегреческого математического знания. Он заимствовал у предшественников и сам оставил богатое наследие своим последователям, а кроме того, скрепил весь предмет печатью своего авторитета.

«Начала» обычно рассматривают как книгу по геометрии, но в ней также нашлось место теории чисел и некоторым зачаткам алгебры — однако все это изложено с геометрических позиций.

О жизни Эвклида мы знаем очень немного. Позднейшие комментаторы включили в свои работы обрывочные сведения о нем, ни одно из которых современные исследователи подтвердить не могут. Они сообщают, что Эвклид преподавал в Александрии, и отсюда обычно выводят, что в этом городе он и родился, но так ли это на самом деле, нам не известно. В 450 году, более чем через семь веков после смерти Эвклида, в пространном комментарии по поводу его математики философ Прокл писал:

Эвклид… собрал воедино Начала, наведя порядок во многих теоремах Эвдокса, доведя до совершенства многие из теорем Теэтета, а также довел до неоспоримых доказательств те вещи, которые были лишь нестрого доказаны его предшественниками. Этот муж жил во времена первого из Птолемеев; ибо Архимед, который жил недолгое время спустя после первого Птолемея, упоминает Эвклида, а кроме того, говорят, что Птолемей однажды спросил его, имеется ли более краткий путь к изучению геометрии, чем чтение «Начал», на что тот ответил, что царского пути к геометрии нет. Поэтому он моложе, чем окружение Платона, но старше, чем Эратосфен и Архимед; ибо последние были современниками, как в одном месте говорит об этом Эратосфен. В душе он был платоником, испытывал склонность к этой философии, а посему и заключил свои Начала построением так называемых Платоновых тел.

Внимательное изучение некоторых из тем в «Началах» не прямо, но убедительно свидетельствует, что Эвклид должен был в какой-то момент учиться в Платоновой Академии в Афинах. Только там, например, он мог узнать о геометрии Эвдокса и Теэтета. Что касается его характера, то все, что у нас есть, — это некоторые фрагменты из Паппа, который сообщает, что Эвклид был «мягок и любезен со всеми, кто мог хоть в малейшей степени способствовать развитию математики, внимательно следил, чтобы никого каким-либо образом не задеть, но при этом был настоящим ученым, не превозносящим самого себя». Дошло до нас и несколько анекдотов, один из которых передает Стробей. Один из учеников Эвклида спросил его, какова будет его выгода от изучения геометрии. Эвклид позвал раба со словами: «Дай этому человеку три обола, раз он хочет извлекать прибыль из учебы».


Отношение греков к математике сильно отличалось от того, которое господствовало среди вавилонян и египтян. В тех культурах математика рассматривалась в первую очередь в практическом плане — хотя «практическое» могло означать такую ориентацию тоннеля в пирамиде, чтобы душе-ка умершего фараона легче было отправиться напрямую к Осирису. Для некоторых же из греческих математиков числа были не инструментами, время от времени привлекавшимися для подкрепления мистических верований, а самой сутью этих верований.

Аристотель и Платон сообщают о культе, центральной фигурой которого был Пифагор и который расцвел около 550 года до Р.Х. Согласно верованиям адептов этого культа, математика, в особенности числа, есть основа всего творения. Пифагорейцы развили мистические взгляды на гармонию вселенной, основанные отчасти на том открытии, что гармония нот на струнном инструменте связана с простыми математическими закономерностями. Если струна звучит на определенной ноте, то струна вполовину короче звучит на октаву выше, что дает наиболее гармоничный из всех интервалов. Они исследовали различные числовые закономерности, в частности «многоугольные» числа, возникающие, когда объекты выстраиваются так, чтобы образовать многоугольники. Например, «треугольные числа» 1, 3, 6 и 10 возникают из треугольников, а «квадратные числа» 1, 4, 9 и 16 — из квадратов.


Треугольные и квадратные числа.

Пифагореизм включал в себя не лишенную определенных странностей нумерологию — например, число 2 рассматривалось как мужское, а 3 как женское, — но тот взгляд, что глубинная структура природы имеет математический характер, и сегодня лежит в основе большей части теоретического знания. Хотя поздняя греческая геометрия была менее мистической, греки в целом воспринимали математику как самоцель — скорее как ветвь философии, нежели как инструмент.

Есть причины полагать, однако, что этим не все сказано. Твердо установлено, что Архимед, который мог бы быть учеником Эвклида, использовал свои математические способности для создания мощных машин и военных механизмов. Сохранилось очень немного замысловатых греческих устройств, изобретательный замысел и точность исполнения которых указывают на поддерживаемую в полной мере традицию высокого мастерства — античный вариант «прикладной математики». Самый, возможно, известный пример — это механизм, найденный на морском дне вблизи островка Антикитера: по-видимому, он представляет собой устройство для расчета движения небесных тел, выполненное в виде шестеренок, сложным образом сцепленных друг с другом.


Еще от автора Йэн Стюарт
Наука Плоского мира. Книга 3. Часы Дарвина

Важно не только читать хорошие книги, но и писать таковые… Из-за нарушения этого правила волшебники Незримого университета вынуждены вновь спасать несчастную вселенную Круглого мира.XIX век, Англия. Некий человек по имени Чарльз Дарвин пишет книгу «Теология видов», которая не только становится бестселлером, но и тормозит научный прогресс более чем на век, что неизбежно вызовет новый ледниковый период в ближайшие столетия. Ну и как тут не вмешаться аркканцлеру Чудакулли и его коллегам?Третья книга научно-популярного цикла, созданного Терри Пратчеттом в соавторстве с Йеном Стюартом и Джеком Коэном, рассказывает читателю о теории эволюции и ее влиянии на развитие всего человечества.Впервые на русском языке!


Колесники

Добро пожаловать в XXIII век!В эпоху, когда человечество наконец-то «освоилось» в Солнечной системе.На юпитерианскую луну Каллисто, где космоархеологи нашли погребенное под многотысячелетними слоями льдов… устройство? Или все-таки СУЩЕСТВО?То, что привезли на Землю. То, что однажды… включилось? Или все-таки – ожило?И тогда гигантская комета, летевшая к Юпитеру, вдруг изменила свою траекторию – и понеслась к Земле…Что это – нелепое стечение обстоятельств? Неизвестный космический фактор? Или – непреложное доказательство существования на Юпитере разумной жизни?И теперь космический флот Земли отправляется к Юпитеру…


Величайшие математические задачи

Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки — раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук.


Наука Плоского мира. Книга 4. День Страшного Суда

В двух мирах – Плоском и Круглом – вновь переполох! Омниане узнали о Круглом мире и хотят его контролировать. Само его существование – это издевательство над их религией. Однако волшебники Незримого университета придерживаются совсем другой точки зрения. В конце концов, они создали этот мир!В четвертой книге цикла «Наука Плоского мира» Терри Пратчетт, профессор Йен Стюарт и доктор Джек Коэн создают мозгодробительную смесь литературы, ультрасовременной науки и философии в попытке ответить на ДЕЙСТВИТЕЛЬНО большие вопросы – на этот раз о Боге, Вселенной и, честно говоря, Обо Всем.Впервые на русском языке!


Наука Плоского Мира

Когда магический эксперимент выходит из-под контроля, волшебники Незримого Университета случайно создают новую Вселенную. Внутри они обнаруживают планету, которую называют Круглым Миром. Круглый Мир — это удивительное место, где логика берет верх над волшебством и здравым смыслом.Как Вы уже, наверное догадались, это наша Вселенная, а Круглый Мир — это Земля. Вместе с волшебниками, наблюдающими за развитием своего случайного творения, мы проследим историю Вселенной, начиная с исходной сингулярности Большого Взрыва и заканчивая эволюцией жизни на Земле и за ее пределами.Переплетая оригинальный рассказ Терри Пратчетта с главами, написанными Джеком Коэном и Йеном Стюартом, книга дает замечательную возможность посмотреть на нашу Вселенную глазами волшебников.


Математика космоса

Как математические модели объясняют космос? Иэн Стюарт, лауреат нескольких премий за популяризацию науки, представляет захватывающее руководство по механике космоса в пределах от нашей Солнечной системы и до всей Вселенной. Он описывает архитектуру пространства и времени, темную материю и темную энергию, рассказывает, как сформировались галактики и почему взрываются звезды, как все началось и чем все это может закончиться. Он обсуждает параллельные вселенные, проблему тонкой настройки космоса, которая позволяет жить в нем, какие формы может принимать внеземная жизнь и с какой вероятностью наша земная может быть сметена ударом астероида. «Математика космоса» — это волнующий и захватывающий математический квест на деталях внутреннего мира астрономии и космологии. Издание подготовлено в партнерстве с Фондом некоммерческих инициатив «Траектория».


Рекомендуем почитать
Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.