Искусство статистики. Как находить ответы в данных - [10]
Начнем с моей собственной попытки экспериментировать с мудростью толпы, которая выявляет многие из проблем, возникающих, когда в качестве источника данных используется реальный мир, со всей его склонностью к странностям и ошибкам.
Статистика касается не только таких серьезных вещей, как рак и хирургия. В рамках нашего с популяризатором математики Джеймсом Граймом довольно простого эксперимента мы выложили на YouTube видео и попросили угадать число драже в банке. Вы тоже можете попробовать это сделать, посмотрев на фотографию на рис. 2.1 (истинное число станет известно позже). Свои предположения высказали 915 человек, их ответы варьировались от 219 до 31 337. В этой главе мы увидим, как такие переменные можно изображать графически и обрабатывать численно.
Рис. 2.1
Сколько драже в банке? Мы спросили об этом в ролике на YouTube и получили 915 ответов. Ответ будет дан позже
Начнем с того, что на рис. 2.2 отображены три способа представления чисел, указанных 915 участниками. Их можно назвать по-разному: распределение данных, выборочное распределение или эмпирическое распределение[39].
Рис. 2.2
Различные способы отображения 915 предположений о количестве драже в банке: (a) точечная диаграмма с разбросом, чтобы точки не перекрывали друг друга; (b) диаграмма размаха, или «ящик с усами»; (c) гистограмма
(a) Точечная диаграмма просто показывает все значения в виде отдельных точек, но для каждой добавлено случайное отклонение по вертикали, чтобы точки не перекрывали друг друга, поскольку некоторые догадки были высказаны по несколько раз. Четко видна концентрация большого количества значений в диапазоне примерно до 3000, а затем длинный «хвост» тянется более чем за 30 000, причем в точке 10 000 наблюдается всплеск.
(b) Диаграмма размаха («ящик с усами») показывает некоторые базовые характеристики распределения[40].
(c) На гистограмме просто учитывается, сколько точек данных попало в тот или иной интервал. Она дает очень приблизительное представление о форме распределения.
Эти способы отображения сразу же позволяют выделить некоторые особенности распределения. Видно, что оно сильно скошено, то есть асимметрично (отсутствует даже приблизительная симметрия относительно какой-нибудь центральной точки) и из-за наличия нескольких очень больших чисел имеет длинный «правый хвост». Вертикальные ряды точек на точечной диаграмме (изображающие повторяющиеся числа) также указывают на некоторое предпочтение круглых чисел.
Однако у всех диаграмм есть общая проблема. Внимание сосредоточено на самых больших значениях, причем основная часть чисел сконцентрирована в левой части. Можно ли представить эти данные более информативно? Мы могли бы отбросить самые большие числа как нелепые (когда я первоначально анализировал полученные величины, я сознательно исключил все, превышающие 9000). Кроме того, мы можем уменьшить влияние экстремальных наблюдений, скажем, отобразив данные в логарифмическом масштабе, когда интервал от 100 до 1000 имеет такую же длину, что и интервал от 1000 до 10 000[41].
На рис. 2.3 представлена более понятная структура с вполне симметричным распределением и отсутствием значительных выбросов. Это избавляет нас от исключения каких-либо значений наблюдений, что обычно не считается хорошей идеей (если, конечно, речь не идет о явных ошибках).
Рис. 2.3
Графическое отображение догадок о числе драже в банке в логарифмическом масштабе: (a) точечная диаграмма; (b) «ящик с усами»; (c) гистограмма – на всех заметна достаточная степень симметрии
Единственно правильного способа отображения чисел нет, у каждого из способов свои преимущества: на точечной диаграмме показаны все отдельные точки, «ящик с усами» дает визуальное представление, а гистограмма помогает полнее понять вид исходного распределения.
Переменные, которые записываются в виде чисел, могут быть разного типа:
• Счетные переменные: могут принимать целочисленные значения 0, 1, 2, 3… Например, ежегодное число самоубийств или предположения о количестве драже в банке.
• Непрерывные переменные: могут принимать любые значения. Например, некоторые вещи теоретически можно измерять с любой точностью и получать любые числа. Скажем, вес и рост, которые отличаются как у разных людей, так и у одного человека в зависимости от времени. Разумеется, эти значения можно округлить до целого числа сантиметров или килограммов[42].
Когда набор наблюдений (выборка) сводится к одному числу, мы, как правило, называем его средним значением. Все знакомы с понятием средней зарплаты, средней оценки на экзамене или средней температуры, но часто не знают, как интерпретировать эти величины (особенно если человек, который о них говорит, сам не понимает, о чем речь).
Чаще всего встречаются три толкования термина «среднее значение»:
1. Среднее арифметическое (или выборочное среднее): сумма всех величин, деленная на их количество.
2. Медиана: среднее по величине число ранжированного ряда (то есть слева и справа от него будет поровну чисел)[43]. Именно так Гальтон считал голоса толпы[44].
3. Мода: чаще всего встречающееся значение в выборке.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
Один из лучших популяризаторов науки Фрэнк Вильчек в доступной форме описывает основные составляющие физической реальности — пространство, время, материю, энергию и динамическую сложность. Вы узнаете о теории Большого взрыва и возникновении Вселенной, познакомитесь с одними из крупнейших проектов современности: охотой на частицу Хиггса и поиском гравитационных волн, положивших начало новому виду «многоканальной» астрономии. Книга лауреата Нобелевской премии по физике для всех, кто хочет приблизиться к пониманию устройства Вселенной.
Если вы сомневались, что вам может пригодиться математика, эта книга развеет ваши сомнения. Красота приведенных здесь 10 уравнений в том, что пронизывают все сферы жизни, будь то грамотные ставки, фильтрование значимой информации, точность прогнозов, степень влияния или эффективность рекламы. Если научиться вычленять из происходящего данные и математические модели, то вы начнете видеть взаимосвязи, словно на рентгене. Более того, вы сможете управлять процессами, которые другим кажутся хаотичными. В этом и есть смысл прикладной математики. На русском языке публикуется впервые.
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.
Если упражнения полезны, почему большинство их избегает? Если мы рождены бегать и ходить, почему мы стараемся как можно меньше двигаться? Действительно ли сидячий образ жизни — это новое курение? Убивает ли бег колени и что полезнее — кардио- или силовые тренировки? Дэниел Либерман, профессор эволюционной биологии из Гарварда и один из самых известных исследователей эволюции физической активности человека, рассказывает, как мы эволюционировали, бегая, гуляя, копая и делая другие — нередко вынужденные — «упражнения», а не занимаясь настоящими тренировками ради здоровья. Это увлекательная книга, после прочтения которой вы не только по-другому посмотрите на упражнения (а также на сон, бег, силовые тренировки, игры, драки, прогулки и даже танцы), но и поймете, что для борьбы с ожирением и диабетом недостаточно просто заниматься спортом.