Искусство статистики. Как находить ответы в данных - [12]

Шрифт
Интервал

.


Таблица 2.1

Характеристики выборки для 915 предположений о количестве драже в банке. Истинное число равно 1616


Толпа в нашем маленьком эксперименте продемонстрировала значительную мудрость, даже несмотря на несколько странных ответов. Это показывает, что, хотя данные часто включают ошибки, выбросы и другие странные величины, их вовсе не обязательно выискивать и исключать. Кроме того, это указывает на полезность использования характеристик выборки, на которые не влияют даже столь эксцентричные наблюдения, как 31 337. Такие характеристики называются робастными (то есть устойчивыми) и включают медиану и интерквартильный размах. Наконец, эксперимент подчеркивает ценность обычного просмотра данных – урок, который будет подкреплен следующим примером.


Разница между группами чисел

Сколько сексуальных партнеров имеют британцы в течение жизни?

Цель этого вопроса вовсе не любопытство относительно личной жизни людей. Когда в 1980-х годах обозначилась вся серьезность проблемы СПИДа, представители организаций здравоохранения Великобритании осознали, что не располагают достоверными данными о сексуальном поведении в стране, в частности о частоте смены партнеров, количестве людей, имеющих одновременно нескольких партнеров, а также об используемых сексуальных практиках. Такая информация была необходима для прогнозирования распространения болезней, передающихся половым путем, и планирования медицинских услуг. Однако люди все еще пользовались данными Альфреда Кинси для США 1940-х годов, а он не пытался получить репрезентативную выборку.


В конце 1980-х в Великобритании и США, несмотря на противодействие определенных кругов, были проведены масштабные, дорогостоящие и тщательные исследования сексуального поведения. И хотя Маргарет Тэтчер в последний момент отказалась поддержать работы по изучению сексуальных привычек в стране, к счастью, ученые смогли найти благотворительное финансирование, и в результате каждые 10 лет после 1990 года проводят Национальное исследование сексуальных отношений и образа жизни (Natsal).

Третье исследование (Natsal-3) проводилось в 2010 году и обошлось в 7 миллионов фунтов стерлингов[52]. В табл. 2.2 представлены сводные данные из Natsal-3 о количестве сексуальных партнеров (противоположного пола), о которых сообщили люди в возрасте от 35 до 44 лет. Хорошее упражнение – использовать эти сведения, чтобы самостоятельно реконструировать, как могут выглядеть данные. Отметим, что наиболее часто встречающееся значение (мода) – это 1, то есть группа людей, у которых за жизнь был всего один партнер, по-прежнему велика. В таблице также отражены принципиальные различия между средними арифметическими и медианами, что говорит о распределениях с длинным правым хвостом. Среднеквадратичные отклонения велики, и это не лучшая мера разброса из-за неоправданно сильного влияния нескольких чрезвычайно больших значений в выборке.


Таблица 2.2

Сводные статистические данные о количестве сексуальных партнеров (противоположного пола) за всю жизнь, согласно ответам 806 мужчин и 1215 женщин в возрасте 35–44 лет, участвовавших в опросе Natsal-3 в период с 2010 по 2012 год. Среднеквадратичное отклонение включено для полноты картины, хотя и не является удачной характеристикой при таком разбросе данных


При сравнении ответов мужчин и женщин можно отметить, что у мужчин партнеров больше, чем у женщин – как по выборочному среднему (около 6), так и по медиане (3). Или, если воспользоваться относительными показателями, число партнеров, которое сообщают мужчины, примерно на 60 % больше, чем у женщин – как для выборочного среднего, так и для медианы.

Такая разница может вызвать у нас подозрения в отношении данных. В замкнутой генеральной совокупности (популяции) с одинаковым количеством мужчин и женщин и примерно одинаковым возрастным профилем среднее (в смысле среднее арифметическое) число партнеров противоположного пола у мужчин и женщин должно быть практически равнозначным![53] Так почему же мужчины в возрастной группе от 35 до 44 лет сообщают о значительно большем количестве партнеров, чем женщины? Отчасти это может объясняться наличием у мужчин более молодых партнерш, которые не попадают в этот возрастной диапазон, а отчасти существованием систематического расхождения между тем, как мужчины и женщины учитывают свою сексуальную историю. Похоже, мужчины склонны преувеличивать число партнеров, а женщины – преуменьшать, или верно и то и другое.

На рис. 2.4 показано реальное распределение, которое подтверждает мнение о тяжелых правых хвостах, сложившееся на основании параметров, представленных в таблице. Кроме того, при взгляде на диаграмму видны и другие важные детали, такие как склонность мужчин и женщин указывать округленные числа при наличии десяти и больше партнеров (за исключением одного педантичного мужчины, возможно, статистика, который точно указал: сорок семь). Конечно, вы можете задуматься о достоверности таких сведений, а возможные искажения в них мы обсудим в следующей главе.


Рис. 2.4

Данные, предоставленные Natsal-3 на основе опроса 2010–2012 годов. Из-за экономии места ограничены числом 50, однако общее количество и у мужчин, и у женщин достигало 500. Обратите внимание на склонность мужчин называть большее число партнеров, чем женщины, и указывать круглые числа в случае 10 и более партнеров представителями обоих полов


Рекомендуем почитать
Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Основы реальности. 10 фундаментальных принципов устройства Вселенной

Один из лучших популяризаторов науки Фрэнк Вильчек в доступной форме описывает основные составляющие физической реальности — пространство, время, материю, энергию и динамическую сложность. Вы узнаете о теории Большого взрыва и возникновении Вселенной, познакомитесь с одними из крупнейших проектов современности: охотой на частицу Хиггса и поиском гравитационных волн, положивших начало новому виду «многоканальной» астрономии. Книга лауреата Нобелевской премии по физике для всех, кто хочет приблизиться к пониманию устройства Вселенной.


Десять уравнений, которые правят миром. И как их можете использовать вы

Если вы сомневались, что вам может пригодиться математика, эта книга развеет ваши сомнения. Красота приведенных здесь 10 уравнений в том, что пронизывают все сферы жизни, будь то грамотные ставки, фильтрование значимой информации, точность прогнозов, степень влияния или эффективность рекламы. Если научиться вычленять из происходящего данные и математические модели, то вы начнете видеть взаимосвязи, словно на рентгене. Более того, вы сможете управлять процессами, которые другим кажутся хаотичными. В этом и есть смысл прикладной математики. На русском языке публикуется впервые.


Бесконечная сила

Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.


Парадокс упражнений

Если упражнения полезны, почему большинство их избегает? Если мы рождены бегать и ходить, почему мы стараемся как можно меньше двигаться? Действительно ли сидячий образ жизни — это новое курение? Убивает ли бег колени и что полезнее — кардио- или силовые тренировки? Дэниел Либерман, профессор эволюционной биологии из Гарварда и один из самых известных исследователей эволюции физической активности человека, рассказывает, как мы эволюционировали, бегая, гуляя, копая и делая другие — нередко вынужденные — «упражнения», а не занимаясь настоящими тренировками ради здоровья. Это увлекательная книга, после прочтения которой вы не только по-другому посмотрите на упражнения (а также на сон, бег, силовые тренировки, игры, драки, прогулки и даже танцы), но и поймете, что для борьбы с ожирением и диабетом недостаточно просто заниматься спортом.