Справедливости ради необходимо отметить, что у всего этого - и переделки ТЗ, и срыва сроков - были вполне объективные причины, главная из которых - колоссальная сложность технических проблем создания СПС. Они заслуживают хотя бы краткого перечисления.
Прежде всего, еще в 1950-е гг. было установлено, что скорость СПС не может быть лишь немного выше М=1, поскольку это область наибольшего волнового сопротивления. По мере дальнейшего роста числа М сопротивление снижается и, к тому же, повышается эффективность работы двигателей. Поэтому СПС должен как можно быстрее проходить трансзвуковые режимы и выполнять крейсерский полет со скоростью порядка 2500-3000 км/ч. Однако на этих скоростях происходит кинетический нагрев поверхности самолета в результате трения о воздух и торможения набегающего потока. При длительном полете различные участки поверхности нагреваются от 120*С до 160'С, а отдельные места, например, передние кромки воздухозаборников, - до 183"С. И это при том, что на рабочих высотах СПС температура окружающего воздуха равна минус 56*С!
Нагрев чреват сразу несколькими последствиями, прежде всего, снижением прочности конструкционных материалов. Поэтому в ходе создания Ту-144 пришлось разработать новые термостойкие сплавы, способные работать в условиях, когда самолет то нагревается, то охлаждается, то расширяется за счет нагрева и наддува, то сжимается на малых высотах и низких скоростях. И это не какие-то малые изменения - фюзеляж Ту-144 в полете удлинялся примерно на 300 мм! Поэтому самолет приходилось проектировать с учетом тех упругих и термических деформаций, которым он подвергнется в полете. Повышенные рабочие температуры требовали также разработки новых смазочных и уплотнительных материалов. Они же, плюс низкое атмосферное давление на высотах порядка 20 км сделали неизбежным создание новых систем жизнеобеспечения пассажиров и экипажа.
Не менее сложными оказались проблемы аэродинамической компоновки самолета. При ее выборе пришлось провести огромный объем экспериментальных и теоретических исследований. В институтах и КБ практически одновременно проверяли теоретические положения транс-и сверхзвуковой аэродинамики, проводили испытания моделей в аэродинамических трубах. Особенно много внимания уделялись крылу: поиску его формы в плане, относительной толщины, профилировки. Задача проектирования крыла находилась в неразрывной связи с выбором способа балансировки самолета на крейсерском режиме при минимальной потере аэродинамического качества. Эта, вторая, проблема связана с тем, что для всех известных форм крыльев аэродинамический фокус, т.е. точка приложения приращения подъемной силы при увеличении угла атаки, при переходе от дозвуковых к сверхзвуковым скоростям смещается по хорде крыла назад, где и остается при дальнейшем росте числа М. Поскольку положение центра масс обычно не изменяется, то это приводит к необходимости увеличения балансировочных усилий и, соответственно, к потере аэродинамического качества. Пытаясь решить эти задачи, туполевцы стремились найти такую компоновку, которая бы обеспечила минимальное смещение фокуса при переходе через «звуковой барьер». При этом рассматривались различные, в т.ч. очень сложные и необычные схемы крыла.
Первые «пассажиры» сверхзвукового самолета - имитаторы тепловыделения на тепловом стенде Ту-144
Натурный подвижный стенд топливной системы Ту-144
При проектировании Ту-144 использовался мощный научный потенциал ЦАГИ
В ходе тщательных исследований было показано, что требованию минимального смещения фокуса удовлетворяет составная несущая поверхность, представляющая собой треугольное крыло с сильно развитым наплывом. В поисках оптимальной конфигурации крыла было продуто более 200 его вариантов. Результатом стало крыло оживальной формы, которое, хоть и не обеспечило нулевую разбежку фокусов (получилось 7% средней аэродинамической хорды), но в допустимых пределах увязало параметры аэродинамического качества, максимального коэффициента подъемной силы, продольного момента, имело достаточный объем для размещения топлива. Для компенсации смещения фокуса пришлось организовать перекачку топлива при переходе через М=1 из баков в наплывной части крыла в хвостовой бак. К слову, конструкторы «Конкорда», столкнувшись с этими проблемами, решили их точно так же - крылом сложной формы и перекачкой топлива. Вообще аэродинамические компоновки крыльев советского и англо-французского самолетов оказались весьма близкими, главные различия заключались в форме их серединных поверхностей. Кроме того, французы применили в своем крыле поверхности двойной кривизны, а советские технологи отказались использовать такие панели в силовой части крыла.
Большую проблему представлял собой выбор компоновки силовой установки. Рассматривались несколько вариантов, в т.ч. и со спаренными мотогондолами, разнесенными примерно на 1/3 размаха крыла. Этот вариант отвергли из-за опасения, что в случае отказа двигателя на сверхзвуковой скорости возникнет такая комбинация возмущений по крену и скольжению, которая приведет к выходу из строя остальные двигатели. Такие отказы стали причиной катастроф американских самолетов SR-71 и В-58. В то же время отказ одного из двигателей на стратегическом бомбардировщике ХВ-70, отличавшемся их «пакетным» расположением, не привел к серьезным последствиям. Поэтому вариант компоновки с «центральной мотогондолой», по которому четыре ТРД устанавливались под крылом в хвостовой части самолета, был выбран в качестве основного. Такое расположение обеспечивало довольно низкий уровень сопротивления, что компенсировало весовые издержки, связанные с длинными каналами воздухозаборников.