А ну-ка, догадайся! - [33]

Шрифт
Интервал



В 4 случаях из 6 девочка выигрывает. Это подтверждает вывод, полученный с помощью первого рассуждения: девочка выигрывает с вероятностью 2/3.


Парадокс с лифтом


>Тем, кому приходится часто пользоваться лифтом, вероятно, доводилось не раз обращать внимание на один странный теоретико-вероятностный парадокс. Предположим, что лифты в этом здании ходят независимо и среднее время ожидания на каждом этаже одинаково.



>Мистер Верх работает в конторе на одном из верхних этажей. Он очень удивлен.

>М-р Верх. Поразительно! Первым всегда приходит лифт снизу. Я замечал это неоднократно.



>М-р Верх. Может быть, лифты собирают в подвале, а готовую продукцию отправляют с крыши здания на вертолетах?



>Мисс Низ работает в конторе на одном из нижних этажей. Каждый день она в обеденный перерыв поднимается в ресторан, расположенный на верхнем этаже здания.

>Мисс Низ также очень удивлена.

>Мисс Низ. Ничего не понимаю! Стоит мне вызвать лифт, как он обычно приходит сверху!



>Мисс Низ. Должно быть, лифты доставляют вертолетами на крышу здания, а оттуда спускают на склад в подвале.



>Загадка с лифтами решается просто. По вызову мистера Верха сверху могут прийти только лифты, находящиеся в зачерненном участке шахты. Длина этого участка мала по сравнению с длиной остальной, более светлой части шахты. Следовательно, вызванный им лифт с большей вероятностью придет снизу. Так же решается и загадка, мучившая мисс Низ.


Парадокс с лифтом впервые появился в книге математических задач на смекалку, выпущенной физиком Джорджем Гамовым и его другом Марвином Стерном. Объясняя парадокс с одним лифтом, Гамов и Стерн допустили небольшую ошибку. Они утверждали, что вероятности, «разумеется, останутся такими же», если лифтов будет два или больше.

Первым, кто понял, что это не так, был известный специалист по вычислительной математике из Стэнфордского университета Дональд Кнут. В статье «Задача Гамова — Стерна о лифте»[22] Кнут получил несколько неожиданный результат: с увеличением числа лифтов вероятность того, что на любом этаже (кроме первого и последнего) первым придет лифт снизу, стремится к 1/2, и вероятность того, что первым придет лифт сверху, также стремится к 1/2.

В действительности эта ситуация еще более парадоксальна, чем в первоначальном варианте задачи.

Результат Кнута означает, что если вы находитесь на одном из последних этажей и стоите перед дверями одного из лифтов, то с высокой вероятностью именно тот лифт, который вы ждете, придет снизу, рели же вы готовы сесть в любой лифт, который остановится на вашем этаже, то вероятность того, что первым придет лифт снизу, будет иной. При неограниченном увеличении числа лифтов эта вероятность стремится к 1/2. То же верно и относительно лифтов, приходящих по вызову на нижние этажи сверху.

Разумеется, мы предполагаем, что лифты ходят независимо, с постоянной скоростью и что среднее время ожидания одинаково для всех этажей. Если число лифтов невелико, то вероятности изменяются незначительно. Но если число лифтов достигает 20 или более, то вероятности для всех этажей, кроме первого и последнего, мало отличаются от 1/2.


Ревнивые девушки


>У одного парня были две знакомые девушки, и он никак не мог выбрать, с кем из них отправиться на свидание. Одна из девушек жила к востоку от того места, где жил он сам, другая — к западу.

>Ежедневно парень в случайное время спускался на станцию метро и садился в первый попавшийся поезд.



>Поезда в восточном и западном направлениях шли с интервалом в 10 мин.



>Девушка, жившая к востоку от того места, где обитал наш сердцеед, сказала ему как-то раз на прощание.

>Вести. Я так счастлива, милый, что ты навещаешь меня в среднем 9 дней из 10.



>На следующий вечер девушка, жившая к западу от дома нашего героя, сердито упрекнула его.

>Вести. Почему ты являешься ко мне в среднем только раз в десять дней?



>Необъяснимое на первый взгляд предпочтение парня к поездам восточного направления напоминает парадокс с лифтами. Хотя поезда восточного и западного направлений идут с интервалами в 10 мин, расписание составлено так, что поезд западного направления прибывает и отправляется на 1 мин позже, чем ближайший поезд восточного направления.



>Чтобы попасть на поезд, идущий на запад, парень должен ел на станции в течение одного из минутных интервалов, отмеченных на циферблате темными полосами.

>Чтобы попасть на поезд, идущий на восток, он должен прибыть на станцию в течение любого из девятиминутных интервалов, заключенных между темными полосами.

>Вероятность поехать на запад составляет 1/10, вероятность отправиться на восток составляет 9/10.


В этом парадоксе время ожидания между поездами задано расписанием. В последовательности случайных событий «среднее время ожидания» между событиями мы получим, просуммировав времена ожидания и разделив полученную сумму на n. Например, среднее время ожидания для поезда, идущего на восток, в нашем рассказе составляет 4>1/2 мин, а среднее время ожидания для поезда, идущего на запад, — всего 1/2 мин.

С временами ожидания связаны и многие другие парадоксы. Возможно, вам понравится следующий.

Если вы бросаете монету, то среднее время ожидания «орла» (или «решки») равно 2 бросаниям. Это означает, что, взяв перечень исходов длинной серии бросаний монеты и подсчитав времена ожидания, отделяющие выпадение одного «орла» от выпадения следующего «орла», вы получите среднее «расстояние» между «орлами», равное 2 бросаниям (если серия начинается не с «орла», то длина серии «решек» до выпадения первого «орла» в расчет не принимается).


Еще от автора Мартин Гарднер
Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.


Есть идея!

Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.


Математические чудеса и тайны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Остров пяти красок

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Теория относительности для миллионов

Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.


Когда ты была рыбкой, головастиком - я...

      Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.