Формулы в математике были придуманы, как это не странно, чтобы облегчить занятия этой самой математикой. Школьники не могут в это поверить до сих пор.
В древней, например, Индии хорошо обходились без формул: брали обезьяну, кувшин, банан, женщину и другие конкретные предметы… И, как сейчас говорят, конкретно строили логические выводы. И египтяне вместо формул, которые еще не были придуманы, высекали у себя в пустынях, на формульном безрыбьи, красивые барельефы. И арабы когда-то занимались математикой без формул – в стихотворной форме они ею занимались. Сладкозвучные поэмы писали про квадрат суммы…
Но потом пошло-поехало…
Виноват конкретно Пифагор, который сказал, что "ВСЕ ЕСТЬ ЧИСЛО"!… БОлшую неправду для математики трудно придумать и сегодня! Хотя к пифагоровым штанам претензий нет… Скроены на века.
Сегодня математику не любят многие. Подавляющее большинство мирного населения. Не любят прежде всего из-за формул. И правильно делают. Поскольку еще в школе несчастных предупредили, что математика – это формулы, так же как стихи – это рифмы. (Поэтому они не занимаются математикой, а наоборот, целыми днями шлют на радио поздравления в стихах всем своим знакомым, чтобы поразить художественными откровениями весь мир: «поздравляю желаю», «без бед – до ста лет». Не правда ли, очень удачно!?…).
Каково же было мое удивление, когда, читая книги по основам (основаниям) математики, я там, практически, не обнаружил формул.
Формулы, конечно, создают для математика великое облегчение, но это надо понять добровольно, а не подвергаться принудительной формулизации – истязаниям, мол, стерпится – слюбится…
Все наши гуманитарные проблемы в математике не только из-за тяги некоторых отморозков к абстракции. Тут есть еще более коварное слово СЕМАНТИКА, что на человеческом языке означает обычно СМЫСЛ. Так вот, прежде всего со смыслом обычно и борется математика всеми доступными ей средствами, в том числе и формулами… Разумеется, во имя достижения ВЫСШЕГО СМЫСЛА. Как это всегда у нас бывает!
Чем более «высшая" математика – тем меньше в ней СЕМАНТИКИ и больше СИНТАКСИСА. Синтаксис все в школе тоже проходили и он до сих пор мало кому доставляет радость!… Может и права Т. Толстая, когда в романе «КЫСЬ» называет «синтаксис» словом матерным.
Но это еще пока не лекция, а лирическое отступление.
П.С. В интернете, с момента его возникновения, много появляется очень умных людей, порой с законченным физ-мат образованием. Это хорошо, но иногда достает… поскольку от большого ума не все сохраняют способны судить «по законам жанра". Так что к ним отдельная просьба, не подозревать автора в попытке написать учебник по „основаниям математики“, или „монографию“. А главная просьба – вообще не читать ниженаписанное. Не для вас это. Идите с миром откуда пришли…
Что такое «множество» – ясно из самого слова без всякого определения. Тем более, что дать этому фундаментальному математическому понятию определение невозможно. И не пробуйте.
Лучше потратить свою энергию на вечный двигатель или на что-то другое конкретное…
Множеством может быть множество деревьев в лесу, множество студентов в университете или даже множество бедных родственников в Америке, которые могут выслать вам приглашение… Есть, конечно, специальная очень серьезная игра под названием "АКСИОМАТИЧЕСКАЯ теория множеств". Понять ее правила дано немногим, а найти практическое применение никому… Но это развлечение для очень замкнутого круга любителей, коль скоро и сама эта теория очень замкнута.
Множество состоит из элементов – деревьев, студентов, бедных родственников… При этом никакой роли не играет, рассматриваем ли мы тех же студентов в порядке алфавита или по успеваемости.
Недопустимы только двойники или студенты, у которых отсутствуют отличительные свойства. Будьте хоть китайскими студентами, но должны друг от друга отличаться… Могут даже быть множества, состоящее из чисел. Но мы, как договорились, от математики вообще, и от чисел в частности, шарахаемся, как черт от ладана… Поэтому можно и без них. Или можно с ними. Или будем использовать только те числа, которые хорошо знакомы с детства…
Однако мы не будем считать множеством «множество мыслей в голове». И не из-за их количества, а из-за того, что эти мысли-элементы невозможно четко разделить в общей каше, разложить по полочкам и разметить. Множество мыслей, разложенных по полочкам, в голове просто не поместится из-за устаревшего устройства типовой головы.
Кстати, поскольку «множество» ( set ) в русском языке как бы намекает на «много». А понятие «много» ( many ) у каждого из нас свое, то, во избежания спора между русскоязычными, мы будем слово «множество» использовать для любого количества элементов, как и англоязычный Запад. Даже для одного элемента. Даже в случаях, когда в множестве нет ни одного элемента – такое множество называется пустым! Это, в частности, позволит рассказывать своим друзьям корректный, с точки зрения теории множеств, анекдот про «множество нуждающихся ветеранов Куликовской битвы»…