Дискретная математика без формул - [3]

Шрифт
Интервал

С другой стороны, если вдруг ректор решит рассматривать университет, как множество студенческих групп, то группа ух-003 станет элементом множества студенческих групп университета. Тут ничего страшного, если понимать, что множество студентов университета и множество студенческих групп университета – два разных множества.

Впрочем, нас бюрократическими закорючками не удивишь мы и не такое в жизни видим каждый день…


Но, все-таки, теории множеств есть чем удивить даже нас. Это, так называемые парадоксы теории множеств – одно из потрясений первого года прошлого столетия для узкого круга людей.

Поясним на знаменитом примере про брадобрея.

Правитель (вроде Петра I) повелел единственному брадобрею в своем царстве-государстве брить всех тех и только тех, кто не бреется сам. А наказание за ослушание – казнь. Вот брадобрей и бросился брить всех небритых. В конце-концов дошло до того, что он сам зарос бородой… Он взял бритву. Но если он начнет бриться, значит он бреется сам, а таких он брить не имеет права.

Отложив бритву, он понял, что он сам не бреется. Значит он должен взять бритву и… И что?! А ничего хорошего! Казнят бедолагу за нарушение приказа в любом случае!

С точки зрения теории множеств брадобрей в данном случае не смог определиться с (фундаментальным!) отношением принадлежности: включать или не включать себя самого в множество тех, кто не бреется сам.

То есть в основе теории множеств, которая претендует на роль фундамента ВСЕЙ математики, начальное базовое отношение принадлежности выкидывает такие фортеля, которые просто не позволяют создать некоторые из множеств!… Математики приняли единственное разумное решение: Договорились не создавать в рамках теории множеств такие множества, которые нельзя создать!

То есть теория множеств оперирует со всеми множествами, кроме тех, которые нельзя создать. Все эти множества, об'единенные в одно множество, называются УНИВЕРСУМОМ.

Лекция 2. БЕСКОНЕЧНОСТЬ БЫВАЕТ РАЗНАЯ

Самое интересное в теории множеств то, что она рассматривает не только конечные множества – множества, содержащие конечное число элементов, но и бесконечные, для которых даже понятие числа бессмысленно. То есть, теория множеств может рассматривать не только множество студентов в группе и множество березок в лесу, но и множество точек на прямой, и множество звезд на небе…

Основоположник теории множеств Георг Кантор именно из-за бесконечности попортил себе много крови, да так крепко попортил, что пришлось подключаться врачам-психиатрам. Хотя с бесконечностью математики до него уже давным-давно работали. Взять то же бесконечно большое множество точек на прямой или наоборот, бесконечно малые величины из высшей математики…

Но вся беда в том, что ни один живой человек не видел, не слышал, не щупал бесконечности! Поэтому до Кантора математики признавали и использовали так называемую ПОТЕНЦИАЛЬНУЮ бесконечность. Самый кондовый пример – это понятие бесконечно большого числа в высшей математике. Бесконечно большое число это число, которое больше любого наперед заданного. Если человек не понимает, о чем речь, то его просят назвать самое большое число в мире!… Образованный человек обычно называет число миллиардмиллиардов. А ему об'ясняют, что бесконечно большое число больше этого числа – «даже больше чем на еще миллиардмиллиардов».

То есть у нас с вами всегда в запасе есть число потенциально(!) большее, чем придумает эрудит…

Кантор же позволил себе в математике АКТУАЛЬНУЮ бесконечность. То есть то, что до этого могли позволить себе лишь поэты, с которых, как известно, никто строго не спросит… «звездам числа нет, бездне дна». Поэты не любят, чтобы по крохам, по каплям… Любят, чтоб сразу! "Вот она, ВСЯ бездна вашего падения!… Дарю тебе ВСЕ звезды – такой ничтожной малости, для тебя моя, бесценная-единственная, не жалко!"… То есть по Кантору бесконечность существует сразу вся. А раз бесконечные множества есть, и сразу целиком, то с ними можно производить математические манипуляции. Их даже можно сравнивать на больше-меньше.

Поэтому Кантор начал задавать себе «поэтические» вопросы и искать на них математические ответы. Один из ключевых вопросов: "БЕСКОНЕЧНО МНОГО – это всегда ОДИНАКОВО БЕСКОНЕЧНО МНОГО? Или могут быть большие и меньшие бесконечности?"

Чего больше, звезд на небе или точек на прямой?…

Кантор доказал великую теорему, из которой следует, что бесконечности могут быть разные по величине. Поскольку «число» и «количество» – слова в этом случае неуместные, то он ввел термин «мощность». Мощность – это то что остается, когда нас не интересует сущность элементов множества и порядок, в котором они располагаются. То есть, он определил понятие мощности строго, хотя определение и кажется на первый взгляд странным. На второй взгляд этого, обычно, так уже не кажется. От множества студентов останется только мощность, если мы перестанем их различать и будем воспринимать их вне всякого порядка (в естественных условиях).

Увы, приводить примеры множеств, имеющих бесконечную мощность, используя березки и студентов, не получится вообще, а звезды далеки и видны только ночью. Поэтому обратимся для наглядности к находящимся рядом с нами числам.


Еще от автора Александр Валерьевич Соловьев
Ограбления, которые потрясли мир

Эта книга – о «выдающихся» ворах и грабителях. О тех, кто прославил свое имя на крови либо благодаря хитроумным комбинациям и отчаянной наглости. Для них мало значила человеческая жизнь, на первом месте стоял азарт и жажда наживы.Как они становились преступниками и как их ловили? Что привело их к воровству и к чему привело воровство? Как наказывает грабителей суд человеческий и как карает их суд Божий?..Станьте соучастником захватывающих авантюр, где сплелось все: воровская любовь и любовь к воровству; страшное, смешное, глупое и грустное; преступление и наказание…


Изгои российского бизнеса: Подробности большой игры на вылет

Эта книга – о крупнейших российских предпринимателях, в прошлом сильных мира сего, ставших изгоями в своем отечестве. Одни из них вынуждены скрываться на чужбине, другие отбывают или уже отбыли срок в местах заключения за преступления реальные или мнимые, третьих нет в живых. Эти люди – первопроходцы российского бизнеса, люди неоднозначные, но, безусловно, яркие, сильные и умные. Но, по сути, сегодня им нет места в нашем обществе.Почему и как это случилось – расскажет наша книга. Впечатляющие истории, собранные здесь, – не огульные обвинения или нападки на предпринимателей, а рассказ о живых людях и сложных, неоднозначных, порой печальных и постыдных сторонах и свойствах российского бизнеса, судопроизводства и власти.Книга для широкого круга читателей.


Знаковые люди

В этой книге собраны опубликованные в разное время в журнале «Коммерсантъ. Деньги» в рубрике «Story» истории жизни тех, кто в разные времена повелевал умами, кошельками, душами, да и жизнями тысяч, а то и миллионов людей. Наши герои жили в разные эпохи, их свершения можно оценивать по-разному - кто-то оставил после себя выдающиеся произведения искусства или россыпь новых технологий, кто-то - основополагающую теорию или глобальную идею, а кто-то - развалины мифа или потрясающую по размаху, эффективности и жестокости преступную империю.


Знаковые моменты

Третья книга - сборник статей из рубрики STORY журнала «Коммерсантъ ДЕНЬГИ» - в отличие от первых двух обращается не к судьбам отдельных людей или компаний, а к событиям глобального масштаба, раз и навсегда изменившим уклад, традиции, сами основы существования целых обществ, стран и континентов.Неудивительно, что весьма драматичную роль во всех этих историях играли деньги, причем порой самым неожиданным образом. Кто на самом деле разбогател на золотой лихорадке? Чьим экономическим интересам угрожал Павел I? Как быстро можно уничтожить весь Интернет? Ответы на эти и другие вопросы вы найдете в книге «знаковые моменты».Повседневная жизнь обычно проплывает перед нашими глазами неторопливой чередой малозначимых событий и почти бессмысленной суеты.


Не сдаваться: 30 рассказов о тех, кто всегда поднимался с колен

Продолжение бизнес-бестселлеров «Бизнес есть бизнес» и «Бизнес есть бизнес 2», победителей премии «Бизнес-книга года» журнала «Свой бизнес» 2006 года. Эта книга о тех, кто всегда понимался с колен, какой бы сильный удар ни пришлось им получить, о тех, кто всегда готов начинать свое дело с нуля снова и снова, не умеет сдаваться, ломаться под давлением обстоятельств. Герои книги уверены, что свой шанс преуспеть есть практически у каждого. Что для этого необходимо? Да ничего нового - вера в себя, упорный труд и толика удачи.


Апокалипсис: катастрофы прошлого, сценарии будущего

Эта книга – о самых масштабных или просто жутких катастрофах, когда-либо обрушивавшихся на человечество.Эпидемии и стихийные бедствия, войны и аварии с завидной регулярностью разрушали и разрушают, убивали и убивают, ставя под угрозу само существование человечества или, по крайней мере, значительной его части.Что удивительно, самые разнообразные беды и напасти обнаруживают пугающе сходные характеристики… Как итог, пять глав, которые авторы объединили в книгу, по сути, повествуют о фактическом противостоянии человека и окружающего мира.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.