Дискретная математика без формул - [5]
Лекция 3. ОПЕРАЦИИ НАД МНОЖЕСТВАМИ
Говорят операции НАД множествами не потому, что они расположены «над» множествами, а просто так принято. Если НАД вашими волосами колдует парикмахер, это не значит, что результат его манипуляций окажется выше вашей прически. (Но берегитесь хирурга, который проводит операции над больными).
Основных операций всего три. Это меньше, чем в школьной арифметике. Хотя даже это множество операций несколько избыточное. Операции называются ОБ'ЕДИНЕНИЕ, ПЕРЕСЕЧЕНИЕ и ДОПОЛНЕНИЕ. Чем-то они напоминают школьные операции сложения, умножения и изменения знака. Но эта аналогия приблизительна и опасна, на то она и аналогия.
Начнем с исторической байки.
Аксель Иванович Берг – адмирал и академик, человек со взрывным характером, был одним из первых пропагандистов кибернетики в СССР, когда она еще официально считалась «продажной девкой капитализма». Дискретную математику тогда в технических вузах не изучали из-за полной ее практической бесполезности, а кибернетика уже начинала ею робко пользоваться.
Во время беседы с одним «журналистом по научной тематике», который утверждал, что теория множеств не только не нужна, но и не понятна простому советскому инженеру, Берг прервал беседу и приказал своему шоферу отвести их в ближайший детский садик.
В детском садике дети играли в большом песочнике. Других развлечений в послевоенных садиках было мало. Берг нарисовал в песочнике два больших частично пересекавшихся круга, как это делают со свадебными кольцами на открытках и машинах. (Для тех, кто со свадьбами в жизни не сталкивался, скажем, что с похожим перехлестом рисуют олимпийские кольца).
Далее он сказал: «Пусть в левый круг встанут все, кто любит манную кашу, а в правый – все, кто любит сливовый кисель!». Дети были горазды поесть (послевоенное время голодное), поэтому никто не остался равнодушно стоять в стороне и все забежали в нарисованные круги. Об'единение всех этих маленьких сладкоежек и есть операция об'единения теории множеств.
Но, поскольку почти все дети встали в то место, где круги наложились друг на друга, из-за любви к каше и киселю одновременно, то тем самым продемонстрировали понимание физического смысла операции пересечения двух множеств.
«Ну вот! Не знаю как инженеры, а дети понимают смысл операций над множествами!»,– сказал Берг…
Кстати, здесь роль универсума играл весь песочник.
То, что нарисовал на песке Берг, называют сейчас диаграммами Эйлера-Венна. А то, что находилось на песке за пределами каждого из кругов, было дополнением соответствующего множества, то есть множеством элементов универсума, не принадлежащих к числу любителей данного кушанья (там находились Берг с журналистом).
Если рассмотреть внимательно студенческую группу ух-004, то об'единение множества отличников и спортсменов даст множество под названием «слава группы ух-004». Принципиальное отличие об'единения множеств от школьного сложения не только в том, что студенты – это не числа и мы их не пересчитываем(!), но и в том, что студенты, которые одновременно отличники и спортсмены, будут учтены один раз. Так что запросто может оказаться, что отличников четыре, а спортсменов двадцать, но их об'единение под названием «слава группы ух-004» будет содержать всего двадцать два студента.
Ясно, что пересечение этих множеств даст двух студентов, которые одновременно и отличники и спортсмены. Они, скорее всего, девушки, да еще и красавицы, но красота не использовалась здесь в качестве характеристики, по которой выделялись элементы этих множеств…
Когда у математиков появляются в руках об'екты, а у нас здесь раздолье – любые об'екты можно брать, и операции – а мы основную тройку тоже обозначили, то математики начинают говорить об АЛГЕБРЕ.
Алгебра множеств как небо и земля отличается от школьной, хотя есть некоторые аналогии. В алгебре множеств есть те же названия законов: КОММУТАТИВНЫЙ, АССОЦИАТИВНЫЙ и ДИСТРИБУТИВНЫЙ (перестановочный, сочетательный и распределительный). Первые два похожи как две капли воды, упавшие с неба на землю. А вот дистрибутивный закон имеет и аналог в школьной алгебре (выражаясь «по-школьному» произведение суммы есть сумма произведений), но имеет и уникальную версию. В теории множеств, если тоже сказать кратко, то пересечение с об'единением равно об'единению пересечений и (!) об'единение с пересечением равно пересечению об'единений. Второе не имеет аналогии в школьной алгебре:"Сумма с произведением не равна произведению сумм".
Проиллюстрируем сказанное:
Коммутативный закон: Об'единение (пересечение) отличников и спортсменов равно об'единеию (пересечению) спортсменов и отличников.
Ассоциативный закон: От изменения порядка об'единения (пересечения) спортсменов, отличников и красавцев результат не меняется.
Дистрибутивный закон (только экзотическая версия): Об'единение красавцев с пересечением спортсменов и отличников равно множеству, в котором пересекаются об'единения красавцев и спортсменов с об'единеием красавцев с отличниками. (В условных обозначениях это было бы гораздо короче и нагляднее, но мы зареклись насчет формул).
Сложновато воспринимается на слух закон поглощения, который, однако, в ряде случаев позволяет упрощать теоретико-множественные конструкции. Пересечение отличников с об'единением отличников и спортсменов дает множество отличников. Или второй вариант. Об'единение отличников с пересечением отличников и спортсменов дает множество отличников. Тем не мение, если обдумать сказанное, и поразмахивать руками, то справедливость результатов очевидна.
Эта книга – о «выдающихся» ворах и грабителях. О тех, кто прославил свое имя на крови либо благодаря хитроумным комбинациям и отчаянной наглости. Для них мало значила человеческая жизнь, на первом месте стоял азарт и жажда наживы.Как они становились преступниками и как их ловили? Что привело их к воровству и к чему привело воровство? Как наказывает грабителей суд человеческий и как карает их суд Божий?..Станьте соучастником захватывающих авантюр, где сплелось все: воровская любовь и любовь к воровству; страшное, смешное, глупое и грустное; преступление и наказание…
Эта книга – о крупнейших российских предпринимателях, в прошлом сильных мира сего, ставших изгоями в своем отечестве. Одни из них вынуждены скрываться на чужбине, другие отбывают или уже отбыли срок в местах заключения за преступления реальные или мнимые, третьих нет в живых. Эти люди – первопроходцы российского бизнеса, люди неоднозначные, но, безусловно, яркие, сильные и умные. Но, по сути, сегодня им нет места в нашем обществе.Почему и как это случилось – расскажет наша книга. Впечатляющие истории, собранные здесь, – не огульные обвинения или нападки на предпринимателей, а рассказ о живых людях и сложных, неоднозначных, порой печальных и постыдных сторонах и свойствах российского бизнеса, судопроизводства и власти.Книга для широкого круга читателей.
В этой книге собраны опубликованные в разное время в журнале «Коммерсантъ. Деньги» в рубрике «Story» истории жизни тех, кто в разные времена повелевал умами, кошельками, душами, да и жизнями тысяч, а то и миллионов людей. Наши герои жили в разные эпохи, их свершения можно оценивать по-разному - кто-то оставил после себя выдающиеся произведения искусства или россыпь новых технологий, кто-то - основополагающую теорию или глобальную идею, а кто-то - развалины мифа или потрясающую по размаху, эффективности и жестокости преступную империю.
Третья книга - сборник статей из рубрики STORY журнала «Коммерсантъ ДЕНЬГИ» - в отличие от первых двух обращается не к судьбам отдельных людей или компаний, а к событиям глобального масштаба, раз и навсегда изменившим уклад, традиции, сами основы существования целых обществ, стран и континентов.Неудивительно, что весьма драматичную роль во всех этих историях играли деньги, причем порой самым неожиданным образом. Кто на самом деле разбогател на золотой лихорадке? Чьим экономическим интересам угрожал Павел I? Как быстро можно уничтожить весь Интернет? Ответы на эти и другие вопросы вы найдете в книге «знаковые моменты».Повседневная жизнь обычно проплывает перед нашими глазами неторопливой чередой малозначимых событий и почти бессмысленной суеты.
Продолжение бизнес-бестселлеров «Бизнес есть бизнес» и «Бизнес есть бизнес 2», победителей премии «Бизнес-книга года» журнала «Свой бизнес» 2006 года. Эта книга о тех, кто всегда понимался с колен, какой бы сильный удар ни пришлось им получить, о тех, кто всегда готов начинать свое дело с нуля снова и снова, не умеет сдаваться, ломаться под давлением обстоятельств. Герои книги уверены, что свой шанс преуспеть есть практически у каждого. Что для этого необходимо? Да ничего нового - вера в себя, упорный труд и толика удачи.
Эта книга – о самых масштабных или просто жутких катастрофах, когда-либо обрушивавшихся на человечество.Эпидемии и стихийные бедствия, войны и аварии с завидной регулярностью разрушали и разрушают, убивали и убивают, ставя под угрозу само существование человечества или, по крайней мере, значительной его части.Что удивительно, самые разнообразные беды и напасти обнаруживают пугающе сходные характеристики… Как итог, пять глав, которые авторы объединили в книгу, по сути, повествуют о фактическом противостоянии человека и окружающего мира.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.