А ну-ка, догадайся! - [32]
>Желая создать у вас впечатление, будто игра ведется честно, банкомет обращает ваше внимание на то, что ваша карта заведомо не может выглядеть с двух сторон как туз пик. Следовательно, вы вытащили из шляпы либо туза пик — туза бубен, либо туза бубен — туза бубен. У одной из этих карт на обороте изображен туз бубей, у другой — туз пик. И у вас, и у банкомета шансы на выигрыш (по словам банкомета) равны.
>Но если игра честная, то почему ваши денежки так быстро перешли к банкомету? Да потому, что его рассуждения — сплошное надувательство. В действительности его шансы на выигрыш не 1:1, а 2:1!
>Подвох в рассуждениях банкомета в том, что в действительности шествуют не две, а три равновероятные возможности. Извлеченная вами из шляпы карта могла быть тузом пик — тузом бубен, тузом бубен — тузом бубен (вверя стороной А) и тузом бубен — тузом бубен (вверх стороной В).
>Низ совпадает с верхом в 2 случаях из 3. Следовательно, в длинной серии игр банкомет выигрывает 2 игры из каждых трех игр.
Эту карточную игру для демонстрационных целей придумал математик Уоррен Уивер, один из создателей теории информации. Он рассказал о ней в своей статье «Теория вероятностей», опубликованной в октябрьском номере журнала Scientific American за 1950 г.
Один из способов правильного подсчета шансов на выигрыш в игре Уоррена Уивера приведен выше.
А вот еще один. Масти на противоположных сторонах двух карт совпадают. Взяв наугад карту из шляпы, вы с вероятностью 2/3, то есть в 2 случаях из 3, выберете одну из этих карт (либо туза бубен — туза бубен, либо туза пик — туза пик). Следовательно, с вероятностью 2/3 картинка на нижней стороне карты совпадает с картинкой на ее верхней стороне.
Карточная игра Уоррена Уивера представляет собой вариант так называемого парадокса Бертрана с коробками. Французский математик Жозеф Бертран привел его в своей книге по теории вероятностей в 1889 г. Представим себе 3 коробки. В одной из них находятся 2 золотые монеты, в другой —2 серебряные монеты и в третьей — 1 золотая и 1 серебряная монеты. Выберем наугад 1 коробку. Ясно, что в ней с вероятностью 2/3 окажутся две одинаковые (либо золотые, либо серебряные) монеты.
Предположим, однако, что мы извлекли из выбранной нами коробки одну монету и та оказалась золотой. Это означает, что в выбранной нами коробке обе монеты не могут быть серебряными. Следовательно, в нашей коробке находятся либо 2 золотые монеты, либо 1 золотая и 1 серебряная монеты. Так как оба случая равновероятны, кажется, будто вероятность выбрать коробку с двумя одинаковыми монетами упала до 1/2. (Разумеется, все наши рассуждения остаются в силе и в том случае, если извлеченная из коробки монета оказалась серебряной.)
Могло ли на вероятности обнаружить в коробке две одинаковые монеты каким-то образом сказаться то, что мы вынули одну из монет и посмотрели, золотая она или серебряная? Ясно, что не могло.
А вот еще один парадокс, тесно связанный с парадоксом Бертрана. Предположим, что вы бросаете 3 монеты. С какой вероятностью выпадут 3 «орла» или 3 «решки»? Для того чтобы 3 монеты легли вверх «орлами» или «решками», по крайней мере 2 из них должны выпасть вверх «орлами» или «решками». Бросив третью монету, вы либо получите третий «орел» или третью «решку», либо 1 монета ляжет не так, как 2 остальные. Шансов на то, что третья монета выпадает вверх любой стороной, 50 на 50. Следовательно, имеется 50 шансов на 50 за то, что третья монета выпадает вверх той же стороной, как и 2 остальные. Следовательно, с вероятностью 1/2 вы получите 3 «орла» или 3 «решки».
В том, что приведенное выше рассуждение неверно, мы легко убедимся, выписав все возможные исходы бросания 3 монет (О — «орел», Р — решка»):
Как вы видите, 3 «орла» или 3 «решки» выпадают только в 2 случаях из 8. Следовательно, правильно подсчитанная вероятность этого события равна 2/8 = 1/4.
Рассмотрим еще один парадокс, также связанный с тем, что при подсчете вероятности принимаются во внимание не все возможные исходы. У мальчика 1 шарик, у девочки 2 шарика. Они катают шарики по направлению к вбитому в землю колышку. Выигрывает тот, чей шарик окажется ближе к колышку.
Предполагается, что мальчик и девочка одинаково искусны в игре, а расстояния измеряются достаточно точно, и ничьих быть не может. С какой вероятностью выиграет девочка?
Рассуждение 1. Девочка катает 2 шарика, мальчик — только 1 шарик. Следовательно, вероятность выиграть у девочки в 2 раза больше, чем у мальчика, то есть равна 2/3.
Рассуждение 2. Пусть А и В — шарики девочки, С — шарик мальчика. Могут представиться 4 случая.
1) И А, и В ближе к колышку, чем С.
2) Только А ближе к колышку, чем С.
3) Только В ближе к колышку, чем С.
4) С ближе к колышку, чем А и В.
В 3 случаях из 4 девочка выигрывает. Следовательно, вероятность того, что она выиграет, равна 3/4.
Какое из рассуждений правильно? Для того чтобы докопаться до истины, составим исчерпывающий перечень возможных исходов бросаний 3 шариков. В него войдут не 4, а 6 возможных случаев.
Если считать, что на первом месте стоит ближайший к колышку шарик, то равновероятны следующие расположения шариков:
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.