Но действительно ли время похоже на пространственные измерения? На плоскости с нарисованным графиком есть два выделенных «осмысленных» направления. А направления, не совпадающие ни с одной из осей, смысла не имеют, они не изображают ничего. На обычной же геометрической двумерной плоскости все направления равноправны, выделенных осей нет.
По-настоящему время можно считать четвертой координатой, только если оно не будет выделено среди остальных направлений в четырехмерном «пространстве-времени». Надо найти способ «вращать» пространство-время так, чтобы время и пространственные измерения «смешивались» и могли в определенном смысле переходить друг в друга.
Этот способ нашли Альберт Эйнштейн, создавший теорию относительности, и Гермап Минковский, придавший ей строгую математическую форму. Они воспользовались тем, что в природе есть универсальная скорость — скорость света.
Возьмем две точки пространства, каждую— в свой момент времени, или два «события» на жаргоне теории относительности. Если умножить на скорость света интервал времени между ними, измеренный в секундах, то получится определенное расстояние в метрах. Будем считать, что этот воображаемый отрезок «перпендикулярен» пространственному расстоянию между событиями, а вместе они образуют «катеты» какого-то прямоугольного треугольника, «гипотенуза» которого — это отрезок в пространстве-времени, соединяющий выбранные события. Минковский предложил: чтобы найти квадрат длины «гипотенузы» этого треугольника, будем не прибавлять квадрат длины «пространственного» катета к квадрату длины «временного», а вычитать его. Конечно, при этом может получиться отрицательный результат, тогда считают, что «гипотенуза» имеет мнимую длину! Но какой же в этом смысл?
При вращении плоскости длина любого нарисованного на ней отрезка сохраняется. Минковский понял, что надо рассматривать такие «вращения» пространства-времени, которые сохраняют предложенную им «длину» отрезков между событиями. Именно так можно добиться, чтобы скорость света была в построенной теории универсальной. Если два события связаны световым сигналом, то «расстояние Минковского» между ними равно нулю: пространственное расстояние совпадаете интервалом времени, умноженным на скорость света. «Вращение», предложенное Минковским, сохраняет это «расстояние» нулевым, как бы ни смешивались при «повороте» пространство и время.
Это не единственная причина, по которой «расстояние» Минковского обладает реальным физическим смыслом, несмотря на крайне странное для неподготовленного человека определение. «Расстояние» Минковского дает способ построить «геометрию» пространства-времени так, что и пространственные, и временные интервалы между событиями удается сделать равноправными. Пожалуй, именно в этом заключается плавная идея теории относительности.
Итак, время и пространство нашего мира так тесно связаны друг с другом, что трудно попять, где кончается одно и начинается другое. Вместе они образуют что-то вроде сцены, на которой разыгрывается спектакль «История Вселенной». Действующие лица — частицы материи, атомы и молекулы, из которых собраны галактики, туманности, звезды, планеты, а на некоторых планетах — даже живые разумные организмы (читателю должна быть известна по меньшей мере одна такая планета).
Опираясь на открытия предшественников, Эйнштейн создал новую физическую картину мира, в которой пространство и время оказались неотделимы друг от друга, а действительность стала по-настоящему четырехмерной. И в этой четырехмерной действительности «растворилось» одно из двух известных тогдашней науке «фундаментальных взаимодействий»: закон всемирного тяготения свелся к геометрической структуре четырехмерного мира. Но Эйнштейн ничего не смог сделать с другим фундаментальным взаимодействием — электромагнитным.
Пространство-время приобретает новые измерения
Общая теория относительности настолько красива и убедительна, что сразу после того, как она стала известна, другие ученые попытались пройти по тому же пути дальше. Эйнштейн свел к геометрии гравитацию? Значит, на долю его последователей остается геометризовать электромагнитные силы!
Так как возможности метрики четырехмерного пространства Эйнштейн исчерпал, его последователи стали пытаться как-то расширить набор геометрических объектов, из которых можно было бы сконструировать такую теорию. Вполне естественно, что им захотелось увеличить число размерностей.
Но пока теоретики занимались геометризацией электромагнитных сил, были открыты еще два фундаментальных взаимодействия — так называемые сильное и слабое. Теперь надо было объединить уже четыре взаимодействия. При этом возникла масса неожиданных трудностей, для преодоления которых изобретались новые идеи, все дальше уводившие ученых от наглядной физики прошлого века. Стали рассматривать модели миров, имеющих десятки и даже сотни измерений, пригодилось и бесконечномерное пространство. Чтобы рассказать об этих поисках, нужно было бы написать целую книжку. Нам важен другой вопрос: где же расположены все эти новые измерения? Можно ли почувствовать их так же, как мы ощущаем время и трехмерное пространство?