Восемь этюдов о бесконечности. Математическое приключение - [62]
Этот факт весьма удивителен, так как множество Кантора не имеет никакой длины. Действительно, сумма длин всех отрезков, которые мы удаляем, равна:
Таким образом, длина множества Кантора есть результат вычитания из 1 суммарной длины всех этих отрезков, то есть 1, а следовательно, длина множества Кантора равна 0.
Множество Кантора – действительно очень необычный объект. Оно содержит невычислимое количество точек – суммарная длина которых равна нулю! – которые находятся на множестве отрезков прямой! Кроме того, множество Кантора считают первым фракталом. Но этой теме придется подождать другой книги.
Между прочим, число 1 можно записать в троичном представлении как 0,2222… а в десятичном – как 0,999999… Когда я пишу, что 1 = 0,999999… многие удивленно поднимают бровь (или даже обе). Они пытаются объяснить мне, что это неверно, что 1 хоть совсем ненамного, но все же больше, чем 0,999999…
Чаще всего бывает почти невозможно убедить кого-нибудь в моей правоте. Но это не значит, что я не попытаюсь это сделать.
Попробуйте вычесть 0,9999… из 1. Что у вас получается? Если ваш результат хоть на сколько-нибудь отличается от нуля, значит, вы совершаете логическую ошибку.
Или же попробуем сделать вот что. Пусть a = 0,9999999… В таком случае 10a = 9,999999… Вычтя одно число из другого, получим 10 a – a = 9,999999… – 0,999999… А это превосходным образом дает 9a = 9, то есть a = 1.
Если уж и это вас не убедило, мне очень жаль.
Заключение
У книги о бесконечности не может быть конца; бесконечность – это нескончаемая история. Поэтому я не стану писать заключения, а дам вам одну очень красивую задачу, и вы сможете обдумывать ее столько, сколько захотите.
Взгляните на следующее равенство:
1/9801 = 0,00010203040506070809101112131415161718192021
2223242526272829303132333435363738394041424344
4546474849505152535455565758596061626364656667
6869707172737475767778798081828384858687888990
919293949596979900010203…979900010203…
Видите, что тут происходит?
Не видите?
Ну хорошо.
Вот вам то же самое, но в лучшем разрешении:
1/9801 =0,00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
97 99 00 01 02 03…97 99 00 01 02 03 04 05 06… ad infinitum[61].
Мы получили все двузначные числа, расположенные в правильном порядке (!) и повторяющиеся до бесконечности, кроме числа 98.
Почему отсутствует число 98?
Действительно ли отсутствует число 98?
Что получится, если рассмотреть 1/1089?
Что получится, если рассмотреть 1/998 001?
А завершу я текст этой книги своим любимым словом:
ПОЧЕМУ?
Выражение благодарности
Прежде всего я хотел бы поблагодарить Итана Ильфельда за веру в меня и в мои книги.
Я хотел бы воздать благодарность моей верной переводчице Линде Иехиэль.
Я хотел бы выразить особую признательность Алену Деккеру, никогда не перестававшему спорить со мной, за огромную помощь и терпение.
Я чрезвычайно благодарен Тому Бенаму, специалисту по теории множеств, за мудрое редактирование моей книги и множество блестящих идей.
Кроме того, я хотел бы поблагодарить ответственного за издание этой книги, Слава Тодорова, и выразить свою признательность всем сотрудникам издательства Watkins, работавшим над ней.
Наконец, но ни в коем случае не в последнюю очередь, я хотел бы поблагодарить своих агентов – Вики Сатлоу и Зива Льюиса.
Дополнительная литература
Для тех, кто хотел бы изучить этот предмет поглубже, ниже приводится очень краткий список некоторых из тех книг, которые, по моему мнению, стоит прочитать.
Marcus du Sautoy. The Music of the Primes.
George Gamow. One Two Three… Infinity.
Martin Gardner. The Colossal Book of Short Puzzles and Problems.
Raymond Smullyan. Satan, Cantor and Infinity (Смаллиан Р. Сатана, Кантор и бесконечность, а также другие головоломки / Пер. с англ. П. И. Быстрова. М.: Лори, 2014).
Douglas Hofstadter. Gödel, Escher, Bach (Хофштадтер Д. Гёдель, Эшер, Бах: эта бесконечная гирлянда / Пер. с англ. М. А. Эскиной. Самара: Издательский дом «Бахрах-М», 2001).
G. H. Hardy. A Mathematician’s Apology (Харди Г. Г. Апология математика / Пер. с англ. Ю. А. Данилова. Ижевск: НИЦ «Регулярная и хаотическая динамика», 2000).
Об авторе
Хаим Шапира родился в 1962 г. в Литве. В 1977 г. он эмигрировал в Израиль, где получил первую докторскую степень по математической генетике за диссертацию по теории игр и вторую – за исследование математических и философских аспектов изучения бесконечности. Сейчас преподает математику, психологию, философию и литературоведение. Его перу принадлежат книги, ставшие бестселлерами. В своих сочинениях он пытается не склонить читателя к своей точке зрения, а побудить его мыслить самостоятельно. Хаим Шапира стал одним из наиболее популярных и востребованных лекторов в Израиле и говорит в своих выступлениях о творчестве и стратегическом мышлении, об экзистенциальной философии и философии в детской литературе, о счастье и оптимизме, о бессмыслице и безумии, о воображении и смысле смысла, а также о любви и дружбе. Кроме того, он превосходный пианист и заядлый коллекционер всего прекрасного.
Эта книга – не из серии «Помоги себе сам». В ней Хаим Шапира – дважды доктор наук, математик, философ, психолог, литератор – пытается найти ответ на волнующий каждого вопрос – что такое счастье? И что надо делать (или чего не делать), чтобы стать счастливым человеком. К поискам привлечены такие авторитеты, как Платон, Декарт, Шекспир, Чехов, Вуди Аллен… Маленький принц, Винни-Пух, Алиса из Страны чудес и многие другие. Читатель узнает также, почему в нашей жизни так важны числа, что считают высшим счастьем женщины и почему их точка зрения так удивляет мужчин, всегда ли ученье – свет, что такое гнев и какова цена истинной дружбы.Хаим Шапира написал очень смешную книгу об очень серьезных вещах.
Избегать риска любой ценой – это очень рискованный путь, считает видный израильский математик и философ, автор бестселлеров Хаим Шапира. Его лаконичная, написанная с юмором книга полна поучительных парадоксов и примеров, которые объединяет главная тема: рассказ о том, как теория игр влияет на нашу жизнь, как ее положения можно использовать в ведении переговоров, выработке навыков стратегического мышления, в справедливом разделении бремени и в решении множества повседневных задач. «Эта книга касается теории игр и слегка затрагивает ряд важных идей в статистике и теории вероятностей.
Наполеон притягивает и отталкивает, завораживает и вызывает неприятие, но никого не оставляет равнодушным. В 2019 году исполнилось 250 лет со дня рождения Наполеона Бонапарта, и его имя, уже при жизни превратившееся в легенду, стало не просто мифом, но национальным, точнее, интернациональным брендом, фирменным знаком. В свое время знаменитый писатель и поэт Виктор Гюго, отец которого был наполеоновским генералом, писал, что французы продолжают то показывать, то прятать Наполеона, не в силах прийти к окончательному мнению, и эти слова не потеряли своей актуальности и сегодня.
Монография доктора исторических наук Андрея Юрьевича Митрофанова рассматривает военно-политическую обстановку, сложившуюся вокруг византийской империи накануне захвата власти Алексеем Комнином в 1081 году, и исследует основные военные кампании этого императора, тактику и вооружение его армии. выводы относительно характера военно-политической стратегии Алексея Комнина автор делает, опираясь на известный памятник византийской исторической литературы – «Алексиаду» Анны Комниной, а также «Анналы» Иоанна Зонары, «Стратегикон» Катакалона Кекавмена, латинские и сельджукские исторические сочинения. В работе приводятся новые доказательства монгольского происхождения династии великих Сельджукидов и новые аргументы в пользу радикального изменения тактики варяжской гвардии в эпоху Алексея Комнина, рассматриваются процессы вестернизации византийской армии накануне Первого Крестового похода.
Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.