Восемь этюдов о бесконечности. Математическое приключение - [58]

Шрифт
Интервал

. Из этого следует, что должны существовать вещественные числа, которые невозможно описать формулами.

В этом контексте интересно отметить, что американский математик и философ Чарльз Пирс, которого мы уже упоминали, также открыл, причем независимо от Кантора, что установить соответствие между числами натуральными и числами вещественными невозможно. Однако, в отличие от Кантора, Пирс не стал продолжать исследования в этом направлении. Вместо этого он решил, что вещественные числа не существуют в завершенном виде, и то, что мы можем сказать о них, не слишком важно.

О чем невозможно говорить, о том следует молчать[58].

Людвиг Витгенштейн

Вычислимые числа

ОПРЕДЕЛЕНИЕ

Вещественное число называется вычислимым, если существует некоторый алгоритм, при помощи которого можно получить десятичное представление этого числа с любой заданной точностью.

Рациональные числа вычислимы, потому что их десятичное представление либо конечно, либо бесконечно, но периодично и получается при помощи старой доброй операции деления.

Число 0,232233222333222… также вычислимо, потому что можно легко найти его десятичное представление любой длины. Примечание: это число не рационально! Не хотите ли доказать это утверждение?

Алгебраические числа также вычислимы, потому что существуют разные методы решения любого уравнения вида



и определения его корней с любой точностью, какой только можно пожелать.

А кроме того, есть числа, не принадлежащие ни к одной из названных категорий, но все равно вычислимые. Два из них – числа π и e.

Что такое π?

Десятичное представление иррационального числа π бесконечно, никогда не повторяется и не имеет алгебраической формулы. Тем не менее и это число вычислимо.

Еще Архимед знал о существовании алгоритма, позволяющего получить десятичное представление π со всевозрастающей точностью. Этот алгоритм был основан на построении правильных многоугольников с n вершинами, вписанных в окружность. По мере стремления n к бесконечности форма такого многоугольника стремится к окружности.

В 1593 г. французский математик Франсуа Виет нашел замечательную формулу для вычисления π при помощи набора вложенных радикалов{33}.



Помимо исключительной внутренней красоты этой формулы в ней есть еще один чрезвычайно важный элемент – стоящее в ее конце многоточие, которое означает «продолжать ту же процедуру до бесконечности». Трудно поверить, но это был первый случай, когда бесконечный процесс был явно обозначен в математической формуле.

Это напоминает мне одну историю о Людвиге Витгенштейне: он, как рассказывают, предлагал слушателям своих лекций вообразить человека, который бормотал на ходу: «…5, 1, 4, 1, запятая, 3 – всё!» Когда этого человека спросили, что это такое он делает, он ответил, что только что закончил перечисление десятичного представления числа π от конца к началу, чем занимался до этого целую вечность. Эта история кажется гораздо более абсурдной, чем рассказ о человеке, который решил сесть и записать десятичное представление π от начала до конца – и будет заниматься этим вечно. Почему?

Но вернемся к числу π. Интересно отметить, что многие другие помимо Архимеда и Виета пытались вычислить десятичное представление числа π, и все эти попытки в конце концов приводили к нескончаемым столбцам или нескончаемым операциям умножения. Однако в 1656 г. английский математик Джон Валлис открыл следующую формулу:



Если попарно перемножить последовательные сомножители, формулу можно записать в следующем виде:



Это бесконечное равенство действительно да- ет все следующие и следующие цифры десятичного представления π.

Интересно отметить, что именно Джон Валлис впервые использовал в 1655 г. символ бесконечности ∞ (по правде говоря, в своей работе о вычислении площадей под названием «О конических сечениях» (De sectionibus conicis) он использовал выражение 1/∞).

В 1671 г. шотландский математик и астроном Джеймс Грегори предложил еще одну формулу для вычисления π в виде бесконечной суммы:



Какая красивая формула! Простая, изящная и эффектная.

Этот рассказ был бы, однако, неполным, если бы я не упомянул, что сегодня честь открытия приведенной выше формулы приписывают индийскому математику XIV в. Мадхаве, который, по-видимому, знал ее задолго до Грегори. Некоторые исследователи утверждают, что Мадхава не только знал эту формулу, но и нашел способ вычисления отклонения ее результатов от истинного значения π и даже разработал еще одну формулу для вычисления π, дающую гораздо более прямое приближение к значению этого числа, чем формула Грегори. Вот она:



Честно говоря, тут я воспользовался случаем, чтобы показать вам некоторые особенно красивые формулы для вычисления значения π. Чтобы доказать, что π – вычислимое число, достаточно было бы показать всего лишь одну из них.

Что такое е?

Число Эйлера е также не относится к алгебраическим числам, но, поскольку оно определено как предел некоторой последовательности, его значение также вычислимо, и, как и в случае числа π, есть несколько способов этого вычисления. Ниже я привожу несколько изящных и (сравнительно) простых примеров. Возможно, вы уже знакомы с первыми двумя.


Еще от автора Хаим Шапира
Счастье и другие незначительные вещи абсолютной важности

Эта книга – не из серии «Помоги себе сам». В ней Хаим Шапира – дважды доктор наук, математик, философ, психолог, литератор – пытается найти ответ на волнующий каждого вопрос – что такое счастье? И что надо делать (или чего не делать), чтобы стать счастливым человеком. К поискам привлечены такие авторитеты, как Платон, Декарт, Шекспир, Чехов, Вуди Аллен… Маленький принц, Винни-Пух, Алиса из Страны чудес и многие другие. Читатель узнает также, почему в нашей жизни так важны числа, что считают высшим счастьем женщины и почему их точка зрения так удивляет мужчин, всегда ли ученье – свет, что такое гнев и какова цена истинной дружбы.Хаим Шапира написал очень смешную книгу об очень серьезных вещах.


Гладиаторы, пираты и игры на доверии. Как нами правят теория игр, стратегия и вероятности

Избегать риска любой ценой – это очень рискованный путь, считает видный израильский математик и философ, автор бестселлеров Хаим Шапира. Его лаконичная, написанная с юмором книга полна поучительных парадоксов и примеров, которые объединяет главная тема: рассказ о том, как теория игр влияет на нашу жизнь, как ее положения можно использовать в ведении переговоров, выработке навыков стратегического мышления, в справедливом разделении бремени и в решении множества повседневных задач. «Эта книга касается теории игр и слегка затрагивает ряд важных идей в статистике и теории вероятностей.


Рекомендуем почитать
Боги Олимпа и хромосомы

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Никола Тесла. Три феномена гения

В последние годы своей жизни Никола Тесла печально и прозорливо говорил: «Сколько людей называли меня фантазером… Нас рассудит время!» В 1880-х годах позапрошлого века его идею переменного тока специалисты назвали бредом, а ныне весь мир пользуется устройствами, работающими благодаря этому открытию. Многие его гениальные проекты опередили время настолько, что и спустя столетие не смогли быть воспроизведены без чертежей и записей, которые ученый сознательно уничтожил, отказавшись от идеи сверхмощного оружия как сдерживающего фактора в развязывании мировой бойни.


Геракл — праотец славян, или Невероятная история русского народа

Существует легенда о происхождении скифов от связи Геракла с полуженщиной-полуехидной, приключившейся на берегах Днепра-Борисфена. Об этом писал еще отец истории Геродот. Упоминал об этом мифе и Лев Гумилев. Однако особенностью данной книги является углубленное изучение всех аспектов возможных причин возникновения этого мифа. В рамках своего труда автор проводит сенсационные параллели между Гераклом и героем древнерусских былин Ильей Муромцем, между библейским Эдемом и садом Гесперид, находит изображение Геракла на Збручском идоле и делает вывод, что Геродотовы будины, гелоны, навры — праславяне, поклонявшиеся Гераклу как богу.


Наблюдения НЛО в СССР (выпуски 1-3)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Неоткрытые звезды

Статья 1988–1989 гг. о ленинградской ветви фантастической «новой волны» — о писателях семинара Б. Стругацкого.Имеет историческое значение.


Александр Александрович Малиновский (Богданов)

Его имя мало кто знает, хотя весьма популярны и прославлены имена Винера и Берталанфи, развивавших его идеи.