Восемь этюдов о бесконечности. Математическое приключение - [60]

Шрифт
Интервал

Теперь возьмем бесконечное множество, например счетное множество с мощностью ℵ>0 или континуальное множество с мощностью ℵ. Мощность их булеанов обозначается соответственно


Две головоломки для математиков

1. Докажите теорему Кантора (подсказка: парадокс Рассела).

2. Поскольку мощность множества натуральных чисел равна ℵ>0, мощность множества его подмножеств должна быть



Докажите, что



Другими словами, докажите, что мощность всех подмножеств множества натуральных чисел равна мощности континуума.

Парадокс Бурали-Форти

В 1897 г. итальянский математик Чезаре Бурали-Форти представил парадокс, который впоследствии стал называться его именем. Его можно описать следующим образом.

Рассмотрим множество всех множеств, то есть включающее в себя множество всех живущих ныне людей, множество всех людей, которые жили в прошлом, множество всех песен, которые можно сочинить, множество всех женщин, которых никогда не показывали на Fashion Channel[60], множество всех женщин, которых зовут Гризельда, множество всех цветов, множество всех идей, о которых никто никогда не сможет подумать, множество всех сражений, в которых я не участвовал, множество всех вещественных чисел, множество всех кинофильмов, которые не поставил Тарковский, множество всех кинофильмов, которые можно или можно было посмотреть на сайте YouTube, множество всех функций, множество всех философов, которые никогда не страдали от депрессии, множество всех молекул, которые находятся в данный момент в подвале моего дома… Теперь прибавим к нему все подмножества всех множеств. Короче говоря, пусть в этом множестве множеств содержится все, о чем только можно помыслить.

Обозначим это множество множеств Ω.

Очевидно, мощность Ω должна быть больше, чем мощность любого другого множества, – потому что оно включает в себя всё на свете. Но теорема Кантора утверждает, что #P(Ω) > #(Ω). То есть мощность P(Ω) больше, чем мощность Ω, множества всех множеств!

Кантора этот парадокс не особенно обеспокоил, так как он считал, что множество всех множеств слишком велико, чтобы считать его множеством. Не должен удивлять и читателя этой книги, так как мы знаем в свете парадокса Рассела, что не всякий набор объектов образует правильное множество.

Арифметика кардинальных чисел

Надеюсь, теперь вам ясно, что термины «мощность» или «кардинальное число» – это просто обобщение концепции «количества элементов», применяемой для конечных множеств, на множества бесконечные. Количество элементов конечных множеств обозначается натуральными кардинальными числами, но интуитивно понятно, что кардинальные числа также определяют количество элементов в бесконечных множествах. Например, если мощность некоторого множества – ℵ>0, то в нем содержится такое же количество элементов, как и в множестве натуральных чисел.

На уроках математики мы заучили, что над конечными числами можно производить математические операции – например сложение, деление и умножение. Такие же базовые операции можно определить и для множеств. В самом деле, когда мы складываем два натуральных числа, мы, по сути дела, «объединяем» их; эта операция аналогична объединению двух непересекающихся множеств (непересекающимися называются множества, не имеющие общих элементов). Если в одном множестве m элементов, а в другом – n элементов, то объединение этих двух множеств будет содержать n + m элементов.

Приведем один простой пример:

Если A = {Q, W, E, R, T, Y}, а B = {17, 21}, то A∪B = {Q, W, E, R, T, Y, 17, 21}.

В этом случае #A = 6, а #B = 2; следовательно, #A∪B = 6 + 2 = 8.

Операции с кардинальными числами работают точно так же. Например, чтобы вычислить сумму ℵ>0 + ℵ>0, нужно взять два непересекающихся множества, причем оба они должны быть счетными, и посмотреть, какую мощность будет иметь их объединение. Из приведенного примера мы увидим, что результат не зависит от того, какие именно множества мы выберем.

Например, возьмем A = (1, 3, 5, 7, 9, 11…) и B = (2, 4, 6, 8, 10…). Множества А и В не пересекаются, а мощность каждого из них, разумеется, равна ℵ>0.

Как вы видите, A∪B = N, то есть их объединение дает множество всех натуральных чисел, мощность которого, как мы знаем, равна ℵ>0.

Итак, получается, что ℵ>0 + ℵ>0 = ℵ>0. Собственно говоря, мы не открыли ничего нового: мы уже знали, что объединение двух счетных множеств также является счетным множеством.

Но тут нужна осторожность! Не следует увлекаться и думать, что к бесконечным значениям можно применять все правила обычной математики. Например, хотя ℵ>0 + ℵ>0 = ℵ>0, мы не можем вычесть из обеих частей этого равенства по ℵ>0, потому что тогда мы получили бы бессмысленное и, честно говоря, довольно нелепое выражение ℵ>0 = 0! Поэтому следует помнить, что обращение с бесконечными значениями требует некоторой осмотрительности.

Операцию умножения также можно описать в применении к множествам. Когда мы умножаем натуральное число n на m, эта операция на самом деле представляет собой обычное сложение n с самим собой, произведенное m раз, то есть n + n + + … + n = n · m. Преобразуем этот же принцип для множеств: если у нас есть два множества А и В, мы возьмем «В экземпляров» А в том смысле, что к каждому элементу b множества В мы прибавим экземпляр множества А. Например, если A = {Q, W, E, R, T}, а B = {17, 21, 33}, то произведением этих множеств будет объединение экземпляра множества А для числа 17, экземпляра А для 21 и экземпляра А для 33. Это можно записать следующим образом:


Еще от автора Хаим Шапира
Счастье и другие незначительные вещи абсолютной важности

Эта книга – не из серии «Помоги себе сам». В ней Хаим Шапира – дважды доктор наук, математик, философ, психолог, литератор – пытается найти ответ на волнующий каждого вопрос – что такое счастье? И что надо делать (или чего не делать), чтобы стать счастливым человеком. К поискам привлечены такие авторитеты, как Платон, Декарт, Шекспир, Чехов, Вуди Аллен… Маленький принц, Винни-Пух, Алиса из Страны чудес и многие другие. Читатель узнает также, почему в нашей жизни так важны числа, что считают высшим счастьем женщины и почему их точка зрения так удивляет мужчин, всегда ли ученье – свет, что такое гнев и какова цена истинной дружбы.Хаим Шапира написал очень смешную книгу об очень серьезных вещах.


Гладиаторы, пираты и игры на доверии. Как нами правят теория игр, стратегия и вероятности

Избегать риска любой ценой – это очень рискованный путь, считает видный израильский математик и философ, автор бестселлеров Хаим Шапира. Его лаконичная, написанная с юмором книга полна поучительных парадоксов и примеров, которые объединяет главная тема: рассказ о том, как теория игр влияет на нашу жизнь, как ее положения можно использовать в ведении переговоров, выработке навыков стратегического мышления, в справедливом разделении бремени и в решении множества повседневных задач. «Эта книга касается теории игр и слегка затрагивает ряд важных идей в статистике и теории вероятностей.


Рекомендуем почитать
В долинах золотого песка

Эта книга рассказывает о золоте — древнем и современном, об отношении к нему людей различных формаций. Она знакомит с тем, как образовалось золото, каковы его свойства и где оно встречается в природе, какие машины на наших приисках пришли на смену бутаре и промывочному лотку. В заключение говорится об использовании золота в технике сегодняшнего и завтрашнего дня.


От динозавра до компота. Ученые отвечают на 100 (и еще 8) вопросов обо всем

Детские вопросы обо всем на свете – один из главных двигателей научно-популярной литературы. Карманный Ученый «Розового жирафа» много лет отвечал детям в своем подкасте на сайте издательства, а сейчас этот разговор продолжается в Университете детей и Научных лабораториях Политехнического музея. «Розовый жираф» и Политех попросили лучших российских ученых, чтобы они письменно ответили на 108 детских вопросов, и получилась замечательная книга.


США и борьба Латинской Америки за независимость, 1815—1830

Монография посвящена становлению дипломатических и торговых отношений США с государствами Латинской Америки: от первых официальных контактов до дипломатического признания и подписания межгосударственных договоров. Дается оценка деятельности различных участников этих событий: политиков, военных, купцов и просто – авантюристов. Работа имеет серьезное значение для понимания развития внешнеполитических принципов США, в том числе известной доктрины Монро. Автор выявляет социально-культурные предпосылки будущих конфликтов между двумя Америками.


Северная Русь: история сурового края ХIII-ХVII вв.

Вниманию широкого читателя предлагается научно-популярная книга о средневековой истории Северной Руси – от Древней Руси через удельный период к Московской Руси. Территориально исследование охватывает Белозерскую, Вологодскую и Устюжскую земли. История этой отдалённой окраины Древней Руси проанализирована на основе разнообразных письменных источников и с учётом новейших археологических данных. Показаны пути интеграции Севера с метрополией, формы административно-территориального устроения обширного края в XV–XVII вв.


Генерал Иван Георгиевич Эрдели. Страницы истории Белого движения на Юге России

Книга посвящена одному из основателей Добровольческой армии на Юге России генералу И. Г. Эрдели. В основу положены его письма-дневники, адресованные М. К. Свербеевой, датированные 1918–1919 годами. В этих текстах нашла отражение реакция генерала на происходящее, его рассуждения о судьбах страны и смысле личного участия в войне; они воссоздают внутреннюю атмосферу деникинской армии, содержат отрывки личного характера, написанные ярким поэтическим языком. Особое внимание автором монографии уделено реконструкции причинно-следственных связей между жизненными событиями и системообразующими свойствами личности.Монография предназначена для научных работников, преподавателей, студентов, всех интересующихся российской историей.


Никола Тесла. Три феномена гения

В последние годы своей жизни Никола Тесла печально и прозорливо говорил: «Сколько людей называли меня фантазером… Нас рассудит время!» В 1880-х годах позапрошлого века его идею переменного тока специалисты назвали бредом, а ныне весь мир пользуется устройствами, работающими благодаря этому открытию. Многие его гениальные проекты опередили время настолько, что и спустя столетие не смогли быть воспроизведены без чертежей и записей, которые ученый сознательно уничтожил, отказавшись от идеи сверхмощного оружия как сдерживающего фактора в развязывании мировой бойни.