Восемь этюдов о бесконечности. Математическое приключение - [27]
В книге «Гёдель, Эшер, Бах: эта бесконечная гирлянда» Дуглас Хофштадтер предлагает рассмотреть следующую вариацию гипотезы Гольдбаха: можно ли представить любое четное число в виде разности двух простых чисел? Интересно, нельзя ли назвать эту гипотезу «вариацией Гольдбаха – Гольдберга»?
Начнем с начала: 2 = 5 – 3, 4 = 7 – 3, 6 = 11 – 5, 8 = 11 – 3. Разумеется, для некоторых чисел существует несколько вариантов: 10 = (41 – 31) = = (29 – 19) = (23 – 13) = (17 – 7) = (13 – 3).
Несмотря на ярко выраженное сходство этих двух задач, между ними есть фундаментальное различие. Рассматривая исходный вариант гипотезы Гольдбаха, мы можем запустить для любого четного числа компьютерную программу, которая проверит, дает ли это значение сумма двух простых чисел, причем сделает это за конечное время. Даже если такое число очень велико, мы можем быть уверены, что к какому-то моменту программа завершит работу – даже если мы сами до этого момента и не доживем. Во втором же варианте нет никакой гарантии, что компьютер когда-либо закончит свои вычисления. Возьмем произвольное число – скажем, 2010. Абсолютно невозможно определить заранее, когда компьютер закончит вычисления (и закончит ли их когда-либо), потому что, даже если мы проверим все до единого простые числа, скажем, до 12 345 678 910 и не найдем пары простых чисел, разность которых равна 2010, это не значит, что мы не найдем такой пары в будущем. Я использовал здесь число 2010 только для иллюстрации этой идеи. На самом деле компьютеру не составит особого труда выяснить, что число 2010 может быть выражено в виде разности двух простых чисел, например 2017 – 7, 2029 – 19, 2039 – 29 и других. Во всяком случае, эта задача радикально отличается от проверки возможности выражения числа 2010 в виде суммы двух простых чисел (что, как вы уже знаете, возможно: самый простой из нескольких существующих вариантов – 2003 + 7).
Различие состоит в следующем: при поиске ответа в отношении суммы существует конечное число возможностей: нужно лишь проверить все простые числа, меньшие самого искомого числа. В случае 2010 необходимо исследовать только лишь все простые числа до 2007 (самого большого простого числа до 2010). Даже если бы мы взяли не 2010, а 2010! это число все равно было бы конечным, и программа в конце концов пришла бы к тому или иному выводу, проработав в течение конечного времени (более долгого, чем кажется, но тем не менее конечного).
Когда же мы ищем ответ в отношении разности, количество чисел, больших заданного числа, бесконечно. Следовательно, количество разностей, которые, возможно, придется проверить, не ограничено, и может случиться так, что этот процесс не завершится никогда.
Харди хвалит Ферма
Пьер де Ферма (1607–1665) открыл одно интересное обстоятельство, связанное с простыми числами; оно называется «рождественской теоремой Ферма»[25]. Он показал, что любое простое число вида 4n + 1 (например, 5, 13, 17, 29…) есть сумма двух квадратов, а любое простое число вида 4n – 1 (например, 3, 7, 11, 19…) не может быть представлено в виде суммы двух квадратов. Каждое простое число, кроме 2, – либо число вида 4n + 1, либо число вида 4n – 1 (докажите это утверждение самостоятельно). Например, 41 – простое число вида 4n + 1 (4 × 10 + 1), и его можно представить в виде суммы двух квадратов (5² + 4²). А вот 19 – простое число второго вида (4 × 5 – 1), и его невозможно представить в виде суммы двух квадратов. Хотя показать, что, например, число 19 не является суммой двух квадратов, легко, доказать рождественскую теорему Ферма в общем случае не так-то просто.
В книге «Апология математика» Г. Г. Харди приходит к заключению, что упомянутое открытие Ферма – пример «изящной математики» и красивейшая из математических теорем наравне с евклидовым доказательством бесконечности простых чисел.
Что же, раз мы заговорили о «заключениях», нам пора заключить этот раздел о тайной жизни простых чисел и отправиться в (безграничный) мир бесконечности.
Математика, если взглянуть на нее с правильной точки зрения, обладает не только истиной, но и совершенной красотой – красотой холодной и суровой, как красота скульптуры, не потакающей нашим слабостям, лишенной роскошных приманок живописи или музыки, и все же безукоризненно чистой и способной на строгое совершенство, доступное лишь величайшему искусству[26].
Бертран Рассел
4
Великое открытие Пифагора
Математическая теория бесконечности, как и почти все остальное в западной цивилизации, уходит корнями в Древнюю Грецию. Интересно отметить, что греческое слово ἄπειρον (апейрон), обозначающее бесконечность, имеет два значения. Одно из них – нечто неограниченное; второе имеет скорее отрицательный смысл – «нечто неопределенное». Понятие бесконечности впервые ввел в философию Анаксимандр, философ и астроном, ученик Фалеса и учитель Пифагора, живший в VI в. до н. э. В космологии Анаксимандра бесконечность считалась одной из основ мироздания, своего рода неограниченным, неопределенным материалом, который служит основой всего сущего. Некоторые из исследователей досократовской философии видят в Анаксимандре первого метафизика, который включил в греческую философию абстрактную концепцию бога.
Эта книга – не из серии «Помоги себе сам». В ней Хаим Шапира – дважды доктор наук, математик, философ, психолог, литератор – пытается найти ответ на волнующий каждого вопрос – что такое счастье? И что надо делать (или чего не делать), чтобы стать счастливым человеком. К поискам привлечены такие авторитеты, как Платон, Декарт, Шекспир, Чехов, Вуди Аллен… Маленький принц, Винни-Пух, Алиса из Страны чудес и многие другие. Читатель узнает также, почему в нашей жизни так важны числа, что считают высшим счастьем женщины и почему их точка зрения так удивляет мужчин, всегда ли ученье – свет, что такое гнев и какова цена истинной дружбы.Хаим Шапира написал очень смешную книгу об очень серьезных вещах.
Избегать риска любой ценой – это очень рискованный путь, считает видный израильский математик и философ, автор бестселлеров Хаим Шапира. Его лаконичная, написанная с юмором книга полна поучительных парадоксов и примеров, которые объединяет главная тема: рассказ о том, как теория игр влияет на нашу жизнь, как ее положения можно использовать в ведении переговоров, выработке навыков стратегического мышления, в справедливом разделении бремени и в решении множества повседневных задач. «Эта книга касается теории игр и слегка затрагивает ряд важных идей в статистике и теории вероятностей.
Предлагаем вашему вниманию адаптированную на современный язык уникальную монографию российского историка Сергея Григорьевича Сватикова. Книга посвящена донскому казачеству и является интересным исследованием гражданской и социально-политической истории Дона. В работе было использовано издание 1924 года, выпущенное Донской Исторической комиссией. Сватиков изучил колоссальное количество монографий, общих трудов, статей и различных материалов, которые до него в отношении Дона не были проработаны. История казачества представляет громадный интерес как ценный опыт разрешения самим народом вековых задач построения жизни на началах свободы и равенства.
Монография доктора исторических наук Андрея Юрьевича Митрофанова рассматривает военно-политическую обстановку, сложившуюся вокруг византийской империи накануне захвата власти Алексеем Комнином в 1081 году, и исследует основные военные кампании этого императора, тактику и вооружение его армии. выводы относительно характера военно-политической стратегии Алексея Комнина автор делает, опираясь на известный памятник византийской исторической литературы – «Алексиаду» Анны Комниной, а также «Анналы» Иоанна Зонары, «Стратегикон» Катакалона Кекавмена, латинские и сельджукские исторические сочинения. В работе приводятся новые доказательства монгольского происхождения династии великих Сельджукидов и новые аргументы в пользу радикального изменения тактики варяжской гвардии в эпоху Алексея Комнина, рассматриваются процессы вестернизации византийской армии накануне Первого Крестового похода.
Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.