Волшебный двурог - [164]

Шрифт
Интервал

— Вот то-то и дело! Ну-ка, поворачивай мозгами!

— Назови мне опять эти дроби, я их запишу.

⅓, ⅜, 44/120, 265/720

— Приведу-ка я их к одному знаменателю, — решил Илюша.

240/720, 270/720, 264/720, 265/720

Долго он смотрел на то, что получилось, и наконец Радикс объяснил ему:

— 474 —

— Вероятность того, что никто не получит своего письма, то увеличивается, то уменьшается, а изменяется при этом все медленнее и медленнее. Обрати внимание на то, что первые дроби разнятся друг от друга на одну двадцать четвертую, следующие две — на одну сто двадцатую, следующие две — на одну семьсот двадцатую. А если взять еще одну дробь, то она уже от последней будет отличаться на дробь, равную единице, деленной на 5040. Следующая разность будет равна единице, деленной на 40320… Ты, может быть, помнишь это число?

— Помню, — довольно мрачно ответил Илюша, ибо это воспоминание ему не очень-то нравилось.

— Таким образом, изменение вероятности будет идти все медленнее и медленнее. Скоро это и заметить будет невозможно. Ну, а какой же вывод из этого можно сделать, по-твоему?

Илюша думал, думал, но придумать ничего не мог. Никакого вывода у него не получалось.

— Вот как тут обстоит дело, — отвечал Радикс, — здесь мы имеем дело с процессом, который напоминает процесс нарастания суммы бесконечной убывающей геометрической прогрессии. Как там, так и тут слагаемые становятся все меньше и меньше. Как там, так и тут, если число случаев растет до бесконечности, сумма этих слагаемых стремится к определенному пределу (из чего, впрочем, отнюдь не следует, что если слагаемые какого-нибудь ряда уменьшаются, то у их суммы обязательно существует предел; но в данном случае это будет так). Однако тут есть одна немаловажная подробность, касающаяся того, как. именно наша переменная вероятность приближается к своему пределу. Она-то тебя и путала, когда ты смотрел на дроби. В геометрической прогрессии мы просто приближаемся к пределу: что ни шаг, то все ближе. Здесь это дело обстоит не так; вероятность все время колеблется то в одну сторону, то в другую: то она чуть побольше предела, то чуть поменьше. Вспомни-ка нашу «змейку» из Схолии Двенадцатой. Размахи этих колебаний все уменьшаются, и абсолютная величина разности между вычисленной вероятностью и ее пределом падает и падает. Если мы число писем будем увеличивать до бесконечности, то предел этот будет равен примерно 0,367879441171442… Это число замечательное, и мы уже встречались с ним (вернее сказать, с его обратной величиной) в Схолии Семнадцатой. Оно имеет отношение и к логарифмам, и к нашим друзьям комплексным человечкам, и к гиперболе, и к цепной линии, и еще к очень многому в математике, оно нее находится в большой дружбе с числом π и даже приходится ему в некотором роде родственником. Если ты разделишь единицу на это число, то

— 475 —

получишь не что иное, как знаменитое неперово число, основание натуральных логарифмов.

— Опять эта знаменитость! — воскликнул Илюша. — Но, значит, пределы встречаются не только при вычислении площадей? И как это опять одно за другое цепляется!

— Бывает, бывает! — отвечал Радикс. — По этому же примерно поводу мне рассказывали такой любопытный случай. Некий путешественник попал в одном восточном городе на большой базар. Потолкавшись и насмотревшись на изобилие всякой всячины, которая там продавалась, обменивалась и воровалась, он остановился в укромном уголке, где столпилась небольшая кучка людей. Когда он протискался поближе, то увидел сухорукого беднягу, державшего у себя на коленях шестиугольную деревянную досточку с нарисованными символами, а в руке рожок для игральных костей. Приглядевшись, он заметил, что поверхность доски была разделена на семь частей: кружок посредине и шесть секторов в разные стороны. Кружок был разрисован, а в шести секторах было изображено: пика, бубна, черва, трефа, якорь и роза. Это была игра. Заключалась она в следующем: шесть человек из присутствующих ставили каждый по одной монете на шесть секторов досточки, кому на что нравилось. Костемет брал три игральные кости (на каждой из них были изображены те самые символы, что и на досточке), подбрасывал их, а затем опрокидывал рожок на средний, разрисованный кружок. Когда же все ставки были сделаны, он поднимал рожок, и все видели, какие на всех трех костях выпали символы. Как только все это выяснялось, костемет тем игрокам, которые ставили на выпавшие символы, отдавал их ставки вдвое. Так что трое выигрывали и получали ставки шестерых и были, разумеется, тем много довольны. А трое других, оставаясь в проигрыше, лишались своих ставок. Другими словами, костемет брал у шестерых, а отдавал троим все, что он перед этим получил. Наш путешественник, разглядев сие чудо, подивился: какая же корысть костемету сидеть на базаре целый день, брать у шестерых и отдавать троим? Однако некий базарный завсегдатай стал с нашим путешественником спорить, замечая, что трудно найти такого осла на двух ногах, который стал бы день-деньской сидеть на солнцепеке с единственной целью отдать троим взятое у шестерых, что костемет хоть и безобидный человек, но себе на кусок хлеба тоже как-нибудь заработать должен, однако, не будучи жадным до


Еще от автора Сергей Павлович Бобров
Логарифмическая погоня

Научная фантастика с уклоном в гофманиану и математику образца 1922 г.Автор - поэт-футурист, поэтому рассказ написан «языком будущего», чересчур красочно, необычно, с экстравагантными художественными образами.


Восстание мизантропов

Повесть поэта-футуриста, стиховеда, популяризатора математики и писателя-фантаста С. П. Боброва (1889–1971) «Восстание мизантропов» — фантастика в декорациях авангардной прозы. Эту повесть иногда называют одной из первых советских утопий, но в той же мере она является и антиутопией, и гофманиадой, и опередившим свое время «постмодернистским» сочинением. В приложении к книге — воспоминания о С. Боброве М. Л. Гаспарова (1935–2005).


Лира Лир

Третья книга стихов, с иллюстрациями автора.Тексты представлены в современной орфографии.http://ruslit.traumlibrary.net.


Сборник: стихи и письма

Источники1) http://elib.shpl.ru/ru/nodes/3533; http://ruslit.traumlibrary.net//book/futuristy-peta/futuristy-peta.html2) Вавилон: Вестник молодой литературы. Вып. 2 (18). - М.: АРГО-РИСК, 1993. Обложка Олега Пащенко. ISBN 5-900506-06-1. С.72-79. 3) Архив творчества поэтов «Серебряного века» http://slova.org.ru/bobrov/index/4) http://lucas-v-leyden.livejournal.com/ 5) Лица. Биографический альманах. Книга 1. Составитель: А.В. Лавров. СПб.: Феникс, Париж: Atheneum, 1992 г. Серия: Лица. Биографический альманах. ISBN: 5-85042-046-0, 5-85042-047-9.


К<от>. Бубера. Критика житейской философии

Неизвестная книга Сергея Боброва.К Бубера. Критика житейской философии. М., Центрифуга, 1918Из собрания библиотеки Стэнфордского Университета.Под редакцией М.Л. Гаспарова.http://ruslit.traumlibrary.net.


Спецификация идитола

Роман поэта-футуриста, стиховеда, популяризатора математики и писателя-фантаста С. П. Боброва (1889–1971) «Спецификация идитола» — экспериментальное научно-фантастическое повествование о борьбе колоссальных финансово-промышленных объединений за обладание идитолом, веществом с измененной атомной структурой и небывалыми возможностями. Авантюрный сюжет, изобилующий неожиданными поворотами, погонями, взрывами, интригами и кровавыми столкновениями, позволяет автору испытать своеобразную повествовательную технику, близкую к кинематографической.


Рекомендуем почитать
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.


Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.