Волшебный двурог - [163]

Шрифт
Интервал

— 471 —

ному чтецу. По тому, как шипит на ведьминой жаровне поджелудочная железа и как дымит печень, я вижу ясно, что этот сын невежества и враг письменных знаков перепутал конверты! И теперь я вижу, что эта путаница и есть причина всех твоих несчастий!»… Вот что рассказывала Шехерезада. Скажи, пожалуйста, как ты думаешь, возможно ли, чтобы никто из адресатов не получил ни одного письма, если они засунуты в конверты наугад?

— А что дальше было в этой сказке? — спросил Илюша.

— Дальше начинается еще сказка, так как Джиния поясняет Мартышке свою мысль новой сказкой, где каждое из действующих лиц, в свою очередь, опять рассказывает по сказке, и так далее, как и полагается у Шехерезады. А что ты скажешь насчет вероятности того, что ни одна душа не получит своих писем?

— Хм… — сказал Илюша. — Я что-то не пойму, как и взяться за эту задачу! Есть три письма и три конверта, значит надо прикинуть, какие могут быть тут комбинации, то есть как вообще можно вложить письма в конверты.

— Правильно.

— Вот я попробую так, — решил Илюша, — сперва отмечу письма тремя буквами (большими), а потом буду переставлять конверты (я их отмечу маленькими буквами).

— Попробуй.

Илюша составил такую табличку:

AБВ
1)абв(3)
2)авб(1)
3)бав(1)
4)бва(0)
5)ваб(0)
6)вба(1)

Слева он поставил номера возможных комбинаций конвертов, а справа — сколько адресатов при данной комбинации конвертов получат свои письма.

— Значит, так, — сказал Илюша, — есть три письма А, Б и В и три конверта а, б и в. Если конверты расположатся при засовывании в них писем наугад так, как это у меня записано под номером первым, то все трое получат свои письма, так как каждая малая буква в этом случае соответствует большой.

Во втором случае только адресат А получит свое письмо, а Б и В не получат, ибо письмо Б засунуто в конверт для В, и наоборот. В четвертом и пятом случаях никто ничего не получит: все конверты перепутаны. Какова же вероятность того, что никто не получит? Всех возможностей шесть, а никто

— 472 —

ничего не получает в двух случаях. Значит, вероятность равна двум шестым, или одной третьей. Верно?

— Правильно! Одна треть. Вот мы и нашли ответ на обезьянью задачку. Вопрос этот сейчас исчерпан полностью. А теперь давай попробуем поговорить на ту же самую тему, только немножко поглубже копнем, куда обезьяна докопаться не сумела бы. Так вот, как ты думаешь: что же станется с этой вероятностью, если число писем, а стало быть и конвертов, начнет возрастать?

Илюша ответит не сразу. Подумав, он сказал так:

— Мне кажется, что она должна увеличиваться.

— Почему?

— Потому что может быть только один случай, когда все письма попадут по адресу, и, значит, вероятность того, что все получат свои письма, будет падать по мере увеличения количества писем, так как и число комбинаций будет расти.

— Это справедливо. Но я тебя спрашиваю не о вероятности того случая, когда все адресаты получат свои письма, а о совершенно противоположном случае, когда никто не получит своего письма, так как все конверты перепутаны, другими словами, когда в твоей табличке ни разу ни одна большая буква не совпадет с маленькой.

Илюша не знал, что ответить.

— А если попробовать для четырех писем? — сказал он.

— Ну что ж! — отвечал Радикс. — Последуем примеру нашей мартышки.

И Илюша составил табличку:

АБВГАБВГ
1)абвг(4)13)вабг(1)
2)абгв(2)14)вагб(0)
3)авбг(2)15вбаг(2)
4)авгб(1)16)вбга(1)
5)агбв(1)17)вгвб(0)
6)агвб(2)18)вгба(0)
7)бавг(2)19)габв(0)
8)багв(0)20)гавб(1)
9)бваг(1)21)гбав(1)
10)бвга(0)22)гбва(2)
11)бгав(0)23)гваб(0)
12)бгва(1)24)гвба(0)

— Ну, кажется, все! — с облегчением сказал Илюша, составив эту длинную таблицу. — Значит, все получат свои письма тоже только в одном случае. Эта вероятность теперь падает от

— 473 —

одной шестой до одной двадцать четвертой.

А никто не получит своего письма теперь в девяти случаях. Значит, вероятность этого равна девяти двадцать четвертым, или трем восьмым. А для трех писем получалась одна треть. Можно так написать:

⅓ и ⅜ или 8/24 и 9/24.

Значит, вероятность того, что никто не получит своего письма, немного увеличилась. На одну двадцать четвертую.

— Это, конечно, очевидно. А как ты думаешь, что будет далее, если мы будем еще увеличивать число писем?

— Боюсь сказать, — отвечал Илюша. — Как будто вероятность должна понемножку расти?.. Нет, не знаю!

— Допустим, что она «понемножку» будет расти. А нельзя ли выяснить, как именно будет она расти?

Илюша не знал, что ответить.

— Я могу тебе чуточку подсказать. Если мы возьмем пять писем, то эта вероятность будет сорок четыре сто двадцатых, а если возьмем шесть писем, то она будет двести шестьдесят пять семьсот двадцатых.

— Длинные дроби какие-то. Ничего не поймешь!

— Не торопись, — отвечал Радикс. — Давай обратим внимание на то, сколько всего может быть комбинаций. Тут дело обстоит примерно так же, как с перестановками в Дразнилке.

Помнишь?

— Помню! — обрадовался Илюша. — Для трех было шесть, для четырех — двадцать четыре, для пяти — сто двадцать…

— Для шести?

— Для шести — семьсот двадцать… Постой-ка! Ведь в тех дробях, которые ты мне только что назвал, знаменатели тоже точь-в-точь такие же?


Еще от автора Сергей Павлович Бобров
Логарифмическая погоня

Научная фантастика с уклоном в гофманиану и математику образца 1922 г.Автор - поэт-футурист, поэтому рассказ написан «языком будущего», чересчур красочно, необычно, с экстравагантными художественными образами.


Восстание мизантропов

Повесть поэта-футуриста, стиховеда, популяризатора математики и писателя-фантаста С. П. Боброва (1889–1971) «Восстание мизантропов» — фантастика в декорациях авангардной прозы. Эту повесть иногда называют одной из первых советских утопий, но в той же мере она является и антиутопией, и гофманиадой, и опередившим свое время «постмодернистским» сочинением. В приложении к книге — воспоминания о С. Боброве М. Л. Гаспарова (1935–2005).


Лира Лир

Третья книга стихов, с иллюстрациями автора.Тексты представлены в современной орфографии.http://ruslit.traumlibrary.net.


Сборник: стихи и письма

Источники1) http://elib.shpl.ru/ru/nodes/3533; http://ruslit.traumlibrary.net//book/futuristy-peta/futuristy-peta.html2) Вавилон: Вестник молодой литературы. Вып. 2 (18). - М.: АРГО-РИСК, 1993. Обложка Олега Пащенко. ISBN 5-900506-06-1. С.72-79. 3) Архив творчества поэтов «Серебряного века» http://slova.org.ru/bobrov/index/4) http://lucas-v-leyden.livejournal.com/ 5) Лица. Биографический альманах. Книга 1. Составитель: А.В. Лавров. СПб.: Феникс, Париж: Atheneum, 1992 г. Серия: Лица. Биографический альманах. ISBN: 5-85042-046-0, 5-85042-047-9.


К<от>. Бубера. Критика житейской философии

Неизвестная книга Сергея Боброва.К Бубера. Критика житейской философии. М., Центрифуга, 1918Из собрания библиотеки Стэнфордского Университета.Под редакцией М.Л. Гаспарова.http://ruslit.traumlibrary.net.


Спецификация идитола

Роман поэта-футуриста, стиховеда, популяризатора математики и писателя-фантаста С. П. Боброва (1889–1971) «Спецификация идитола» — экспериментальное научно-фантастическое повествование о борьбе колоссальных финансово-промышленных объединений за обладание идитолом, веществом с измененной атомной структурой и небывалыми возможностями. Авантюрный сюжет, изобилующий неожиданными поворотами, погонями, взрывами, интригами и кровавыми столкновениями, позволяет автору испытать своеобразную повествовательную технику, близкую к кинематографической.


Рекомендуем почитать
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.


Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.