Волшебный двурог - [163]
— 471 —
ному чтецу. По тому, как шипит на ведьминой жаровне поджелудочная железа и как дымит печень, я вижу ясно, что этот сын невежества и враг письменных знаков перепутал конверты! И теперь я вижу, что эта путаница и есть причина всех твоих несчастий!»… Вот что рассказывала Шехерезада. Скажи, пожалуйста, как ты думаешь, возможно ли, чтобы никто из адресатов не получил ни одного письма, если они засунуты в конверты наугад?
— А что дальше было в этой сказке? — спросил Илюша.
— Дальше начинается еще сказка, так как Джиния поясняет Мартышке свою мысль новой сказкой, где каждое из действующих лиц, в свою очередь, опять рассказывает по сказке, и так далее, как и полагается у Шехерезады. А что ты скажешь насчет вероятности того, что ни одна душа не получит своих писем?
— Хм… — сказал Илюша. — Я что-то не пойму, как и взяться за эту задачу! Есть три письма и три конверта, значит надо прикинуть, какие могут быть тут комбинации, то есть как вообще можно вложить письма в конверты.
— Правильно.
— Вот я попробую так, — решил Илюша, — сперва отмечу письма тремя буквами (большими), а потом буду переставлять конверты (я их отмечу маленькими буквами).
— Попробуй.
Илюша составил такую табличку:
A | Б | В | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1) | а | б | в | (3) | ||||||||||||||
2) | а | в | б | (1) | ||||||||||||||
3) | б | а | в | (1) | ||||||||||||||
4) | б | в | а | (0) | ||||||||||||||
5) | в | а | б | (0) | ||||||||||||||
6) | в | б | а | (1) |
Слева он поставил номера возможных комбинаций конвертов, а справа — сколько адресатов при данной комбинации конвертов получат свои письма.
— Значит, так, — сказал Илюша, — есть три письма А, Б и В и три конверта а, б и в. Если конверты расположатся при засовывании в них писем наугад так, как это у меня записано под номером первым, то все трое получат свои письма, так как каждая малая буква в этом случае соответствует большой.
Во втором случае только адресат А получит свое письмо, а Б и В не получат, ибо письмо Б засунуто в конверт для В, и наоборот. В четвертом и пятом случаях никто ничего не получит: все конверты перепутаны. Какова же вероятность того, что никто не получит? Всех возможностей шесть, а никто
— 472 —
ничего не получает в двух случаях. Значит, вероятность равна двум шестым, или одной третьей. Верно?
— Правильно! Одна треть. Вот мы и нашли ответ на обезьянью задачку. Вопрос этот сейчас исчерпан полностью. А теперь давай попробуем поговорить на ту же самую тему, только немножко поглубже копнем, куда обезьяна докопаться не сумела бы. Так вот, как ты думаешь: что же станется с этой вероятностью, если число писем, а стало быть и конвертов, начнет возрастать?
Илюша ответит не сразу. Подумав, он сказал так:
— Мне кажется, что она должна увеличиваться.
— Почему?
— Потому что может быть только один случай, когда все письма попадут по адресу, и, значит, вероятность того, что все получат свои письма, будет падать по мере увеличения количества писем, так как и число комбинаций будет расти.
— Это справедливо. Но я тебя спрашиваю не о вероятности того случая, когда все адресаты получат свои письма, а о совершенно противоположном случае, когда никто не получит своего письма, так как все конверты перепутаны, другими словами, когда в твоей табличке ни разу ни одна большая буква не совпадет с маленькой.
Илюша не знал, что ответить.
— А если попробовать для четырех писем? — сказал он.
— Ну что ж! — отвечал Радикс. — Последуем примеру нашей мартышки.
И Илюша составил табличку:
А | Б | В | Г | А | Б | В | Г | |||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1) | а | б | в | г | (4) | 13) | в | а | б | г | (1) | |||||||||||||||||||||||||||||
2) | а | б | г | в | (2) | 14) | в | а | г | б | (0) | |||||||||||||||||||||||||||||
3) | а | в | б | г | (2) | 15 | в | б | а | г | (2) | |||||||||||||||||||||||||||||
4) | а | в | г | б | (1) | 16) | в | б | г | а | (1) | |||||||||||||||||||||||||||||
5) | а | г | б | в | (1) | 17) | в | г | в | б | (0) | |||||||||||||||||||||||||||||
6) | а | г | в | б | (2) | 18) | в | г | б | а | (0) | |||||||||||||||||||||||||||||
7) | б | а | в | г | (2) | 19) | г | а | б | в | (0) | |||||||||||||||||||||||||||||
8) | б | а | г | в | (0) | 20) | г | а | в | б | (1) | |||||||||||||||||||||||||||||
9) | б | в | а | г | (1) | 21) | г | б | а | в | (1) | |||||||||||||||||||||||||||||
10) | б | в | г | а | (0) | 22) | г | б | в | а | (2) | |||||||||||||||||||||||||||||
11) | б | г | а | в | (0) | 23) | г | в | а | б | (0) | |||||||||||||||||||||||||||||
12) | б | г | в | а | (1) | 24) | г | в | б | а | (0) |
— Ну, кажется, все! — с облегчением сказал Илюша, составив эту длинную таблицу. — Значит, все получат свои письма тоже только в одном случае. Эта вероятность теперь падает от
— 473 —
одной шестой до одной двадцать четвертой.
А никто не получит своего письма теперь в девяти случаях. Значит, вероятность этого равна девяти двадцать четвертым, или трем восьмым. А для трех писем получалась одна треть. Можно так написать:
⅓ и ⅜ или 8/24 и 9/24.
Значит, вероятность того, что никто не получит своего письма, немного увеличилась. На одну двадцать четвертую.
— Это, конечно, очевидно. А как ты думаешь, что будет далее, если мы будем еще увеличивать число писем?
— Боюсь сказать, — отвечал Илюша. — Как будто вероятность должна понемножку расти?.. Нет, не знаю!
— Допустим, что она «понемножку» будет расти. А нельзя ли выяснить, как именно будет она расти?
Илюша не знал, что ответить.
— Я могу тебе чуточку подсказать. Если мы возьмем пять писем, то эта вероятность будет сорок четыре сто двадцатых, а если возьмем шесть писем, то она будет двести шестьдесят пять семьсот двадцатых.
— Длинные дроби какие-то. Ничего не поймешь!
— Не торопись, — отвечал Радикс. — Давай обратим внимание на то, сколько всего может быть комбинаций. Тут дело обстоит примерно так же, как с перестановками в Дразнилке.
Помнишь?
— Помню! — обрадовался Илюша. — Для трех было шесть, для четырех — двадцать четыре, для пяти — сто двадцать…
— Для шести?
— Для шести — семьсот двадцать… Постой-ка! Ведь в тех дробях, которые ты мне только что назвал, знаменатели тоже точь-в-точь такие же?
Третья книга стихов, с иллюстрациями автора.Тексты представлены в современной орфографии.http://ruslit.traumlibrary.net.
Повесть поэта-футуриста, стиховеда, популяризатора математики и писателя-фантаста С. П. Боброва (1889–1971) «Восстание мизантропов» — фантастика в декорациях авангардной прозы. Эту повесть иногда называют одной из первых советских утопий, но в той же мере она является и антиутопией, и гофманиадой, и опередившим свое время «постмодернистским» сочинением. В приложении к книге — воспоминания о С. Боброве М. Л. Гаспарова (1935–2005).
Неизвестная книга Сергея Боброва.К Бубера. Критика житейской философии. М., Центрифуга, 1918Из собрания библиотеки Стэнфордского Университета.Под редакцией М.Л. Гаспарова.http://ruslit.traumlibrary.net.
Источники1) http://elib.shpl.ru/ru/nodes/3533; http://ruslit.traumlibrary.net//book/futuristy-peta/futuristy-peta.html2) Вавилон: Вестник молодой литературы. Вып. 2 (18). - М.: АРГО-РИСК, 1993. Обложка Олега Пащенко. ISBN 5-900506-06-1. С.72-79. 3) Архив творчества поэтов «Серебряного века» http://slova.org.ru/bobrov/index/4) http://lucas-v-leyden.livejournal.com/ 5) Лица. Биографический альманах. Книга 1. Составитель: А.В. Лавров. СПб.: Феникс, Париж: Atheneum, 1992 г. Серия: Лица. Биографический альманах. ISBN: 5-85042-046-0, 5-85042-047-9.
Научная фантастика с уклоном в гофманиану и математику образца 1922 г.Автор - поэт-футурист, поэтому рассказ написан «языком будущего», чересчур красочно, необычно, с экстравагантными художественными образами.
Первая книга стихов С. Боброва осталась и самой знаменитой в его творчестве. Своей славой она во многом была обязана иллюстрациям Н. Гончаровой – десяти цветным двухстраничным литографиям. Поэт даже посвятил им специальную статью, помещенную в качестве послесловия. Техника цветной литографии в оформлении футуристической книги была применена впервые. Тираж 500 экз.https://ruslit.traumlibrary.net.
За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.