Волшебный двурог - [165]

Шрифт
Интервал

— 476 —

наживы, удовлетворяется малым, и, хотя он нередко ничего не получает, время от времени ему перепадают две монеты, а иной раз и четыре; что не так много…  Так вот, попробуй рассуди, кто был прав: первый или второй из собеседников? А также выясни, стоило ли людям играть в такую игру и во что им обходилось это удовольствие.

— По-моему, — отвечал Илюша, — это не так трудно.

— Конечно, не так уж трудно. Мы с тобой и потрудней задачи разбирали. Я хочу задать тебе еще один престранный вопрос. Я возьму колоду карт, тщательно их перетасую и сдам всю колоду четырем игрокам. Возможно ли, чтобы при этой сдаче каждый из игроков получил одну масть всю целиком, начиная с короля и до двойки и туза.

— Вероятно, возможно, — ответил юноша. — Но только мне кажется, что это чрезвычайно редкая вещь.

— Вещь не частая, что и говорить, — усмехнулся Радикс. — Но однажды в одном лондонском клубе это все-таки случилось. Игроки до того были поражены, что позвали администрацию клуба и составили специальный протокол о таком удивительном случае. Как, по-твоему, правы они были или нет?

— Не знаю, — вымолвил Илюша. — Мне кажется, что они, наверно, обрадовались такой небылице, как радуется всякий, кто найдет редкую вещь, вроде белой вороны.

— Так вот, видишь ли, самое курьезное в этом случае заключается в том, что с моей точки зрения, удивляться здесь было совершенно нечему. Мои расчеты, совершенно элементарные, доступные любому человеку, знакомому с дробями, говорят, что этот случай нисколько не более вероятен или невероятен, чем всякая иная сдача карт.

— Как так? — в удивлении спросил мальчик.

— Очень просто. С колодой карт возиться долго, возь-

— 477 —

мем случай попроще, но совершенно аналогичный. Я кладу в рожок шесть игральных костей. Подсчитаем, какова вероятность того, что при первом бросании выпадут на первой кости единица, на второй двойка, и так далее по порядку до шестой, на которой должна выпасть шестерка. Ясно, что вероятность того, чтобы на первой кости выпала единица, равна одной шестой. Вероятность того, чтобы на второй кости выпала двойка, тоже равна одной шестой. Но вероятность того, чтобы одновременно на первой выпала единица, а на второй выпала двойка, будет равна

1/6 · 1/6 = 1/36

Это так называемое умножение вероятностей, то есть произведение соответствующих вероятностей, в справедливости чего ты очень легко можешь убедиться, подсчитав соответствующие статочности (или шансы). Подобным же образом вся искомая вероятность будет равна:

1/6 · 1/6 · 1/6 · 1/6 · 1/6 · 1/6 = 1/6>6 = 1/46656

Действительно, вероятность невелика. Но вот в чем тут дело.

Закажи себе еще какую-нибудь — совершенно произвольную — комбинацию очков на шести костях (ну хотя бы, чтобы на каждой кости выпало по пятерке), и ты увидишь, что вероятность ее выпадения совершенно такова же. И какую бы комбинацию из шести случаев ты ни задумал, вероятность ее появления нимало не изменится. Отчего же игроки так удивлялись столь обыкновенному происхождению? Да просто потому, что ту комбинацию, которую они встретили, легко запомнить и отличить от любой другой. И все! Я думаю, ты согласишься, что не менее удивительно было бы, если бы карты распределились у игроков таким образом:

первыйвторойтретийчетвертый
Все королиВсе десяткиВсе семеркиВсе четверки
Все девяткиВсе дамыВсе шестеркиВсе тройки
Все валетыВсе восьмеркиВсе пятеркиВсе двойки
Туз червейТуз трефТуз бубенТуз пик

— 478 —

Так вот, поверь мне, что при такой удивительной раздаче никто бы не стал удивляться, звать старосту клуба и сочинять протокол[42].

Илюша не мог не согласиться.

— Мы с тобой разобрали несколько примеров, которые дают представление о задачах теории вероятностей. В наше время эта наука имеет исключительное значение для всех областей естествознания. А поднял ее до высоты подлинной математической науки великий русский ученый Пафнутий Львович Чебышев. Ученики Чебышева А. А. Марков и А. М. Ляпунов прославились также трудами в этой области. На каком бы языке ни попалась тебе книга по теории вероятностей, в ней обязательно встретятся эти три славных русских имени. И в наши дни советские математики достигли больших успехов в развитии теории вероятностей. Всему ученому миру известны имена советских ученых А. Н. Колмогорова, Н. В. Смирнова, Е. Е. Слуцкого и немало еще их талантливых учеников, последователей и сотрудников, которые с превосходными результатами развивают и продолжают их замечательные труды. Однако, — вдруг поспешно добавил Радикс, — мы заговорились. Надо прибавить шагу, а то опоздаем..

И они пошли дальше через сумрачные залы, библиотеки, лаборатории и еще через ряд каких-то помещений, которые то напоминали цех завода, то внутренность астрономической вышки, то машинное отделение подводной лодки, то какие-то подземные пещеры. Один зал был весь заполнен громадным быстро вертящимся- волчком, который, покачиваясь, описывал хитрые петли по полу. В другом качался огромный маятник. В третьем по воздуху ходили широкие радуги, светящиеся кольца и точки. И конца этому не было. Но вот они подошли к огромным воротам, напоминавшим ворота какого-то великаньего завода. Радикс положил лапку на уста свои и еле слышно произнес:


Еще от автора Сергей Павлович Бобров
Лира Лир

Третья книга стихов, с иллюстрациями автора.Тексты представлены в современной орфографии.http://ruslit.traumlibrary.net.


Восстание мизантропов

Повесть поэта-футуриста, стиховеда, популяризатора математики и писателя-фантаста С. П. Боброва (1889–1971) «Восстание мизантропов» — фантастика в декорациях авангардной прозы. Эту повесть иногда называют одной из первых советских утопий, но в той же мере она является и антиутопией, и гофманиадой, и опередившим свое время «постмодернистским» сочинением. В приложении к книге — воспоминания о С. Боброве М. Л. Гаспарова (1935–2005).


К<от>. Бубера. Критика житейской философии

Неизвестная книга Сергея Боброва.К Бубера. Критика житейской философии. М., Центрифуга, 1918Из собрания библиотеки Стэнфордского Университета.Под редакцией М.Л. Гаспарова.http://ruslit.traumlibrary.net.


Сборник: стихи и письма

Источники1) http://elib.shpl.ru/ru/nodes/3533; http://ruslit.traumlibrary.net//book/futuristy-peta/futuristy-peta.html2) Вавилон: Вестник молодой литературы. Вып. 2 (18). - М.: АРГО-РИСК, 1993. Обложка Олега Пащенко. ISBN 5-900506-06-1. С.72-79. 3) Архив творчества поэтов «Серебряного века» http://slova.org.ru/bobrov/index/4) http://lucas-v-leyden.livejournal.com/ 5) Лица. Биографический альманах. Книга 1. Составитель: А.В. Лавров. СПб.: Феникс, Париж: Atheneum, 1992 г. Серия: Лица. Биографический альманах. ISBN: 5-85042-046-0, 5-85042-047-9.


Логарифмическая погоня

Научная фантастика с уклоном в гофманиану и математику образца 1922 г.Автор - поэт-футурист, поэтому рассказ написан «языком будущего», чересчур красочно, необычно, с экстравагантными художественными образами.


Вертоградари над лозами

Первая книга стихов С. Боброва осталась и самой знаменитой в его творчестве. Своей славой она во многом была обязана иллюстрациям Н. Гончаровой – десяти цветным двухстраничным литографиям. Поэт даже посвятил им специальную статью, помещенную в качестве послесловия. Техника цветной литографии в оформлении футуристической книги была применена впервые. Тираж 500 экз.https://ruslit.traumlibrary.net.


Рекомендуем почитать
В поисках бесконечности

За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.