Волшебный двурог - [161]
— Правильно. Вот математик и говорит, что поскольку это так, то вероятность выпадения «орла» или «решки» равносильна полной достоверности, то есть ничего другого выпасть не может. А что именно выпадет в данный момент, сказать трудно. Если бросать много раз, то они, в общем, должны выпасть в одинаковом количестве. Известный французский естествоиспытатель Бюффон в свое время проделал такой опыт: он бросил монету четыре тысячи сорок раз. «Орел» выпал две тысячи сорок восемь раз, а «решка» — тысяча девятьсот девяносто два раза. Полной точности в равенстве этих чисел, конечно, нельзя ожидать, ибо на белом свете не бывает математически точных монет, но в процентном отношении получилось довольно хорошо; пятьдесят и семь десятых процента и сорок девять и три десятых процента. Если принять полную достоверность за единицу, вероятность выпадения «орла» равна половине, «решки» — тоже половине. Понятно?
— Понятно.
— Представь себе теперь, что ты бросаешь две монетки. Какова вероятность того, что у тебя выпадут два «орла»? Попробуем усложнить нашу задачу.
— Половина, — отвечал Илюша. — Не все ли равно, сколько монеток?
— Вот то-то, что не все равно! — отвечал, усмехнувшись, Радикс.
— Давай-ка сосчитаем. У тебя две монетки — первая и вторая. Какие могут быть случаи? Во-первых, обе монетки выпадут «орлами», во-вторых — обе «решками», в-третьих — первая «орлом», а вторая «решкой»…
— Ах да! — воскликнул Илюша.
— В-четвертых — первая «решкой», вторая «орлом». Значит, всего может быть четыре комбинации, совершенно равноправные, а отсюда мы заключаем, что вероятность выпадения двух «орлов» при бросании двух монеток равна не половине, а только четверти. А зато вероятность выпадения и «орла» и «решки» сразу равна половине, ибо ты не нумеруешь монетки, а подсчитываешь просто общий результат. Чем больше брать монеток, тем расчеты эти делаются все сложнее и сложнее.
— 467 —
Если возьмем три монетки, то будут такие комбинации (я буду отмечать «орла» буквой «О», а «решку» буквой «Р»):
1)ООО | 5) ОРР |
2)OOP | 6) POP |
3)ОРО | 7) РРО |
4)РОО | 8) РРР |
Всего восемь комбинаций. Теперь вероятность выпадения трех «орлов» равна одной восьмой, двух «орлов» — трем восьмым, одного «орла» — тоже трем восьмым. Вероятность того, что ни одного «орла» не будет, равна снова одной восьмой. Числители этих дробей будут: 1—3—3—1, а знаменатель равен их сумме. Одна восьмая — это половина в третьей степени, а числители эти равны коэффициентам при разложении куба суммы. Вот почему эти числа имеют отношение к треугольнику Паскаля. Эти соотношения заметил и указал еще Тарталья, который жил лет за сто до Паскаля.
— Это все ужасно интересно!
— Подобные задачи возникают во многих науках, в частности, и в физике, когда дело касается, например, движения молекул газа. И этим способом разрешают важные и очень сложные проблемы самого разнообразного характера, начиная от контроля при производстве электролампочек или разведения новых пород злаков и кончая самыми трудными проблемами атомной физики. Понятно?
— Как будто я немного понял. Я слышал, как говорят, что «по теории вероятностей» должно случиться то или иное, но я думал, что это шутка.
— Когда шутка, а когда и нет…
— А что такое рассеяние отдельных случаев вокруг средней? Я слышал, но не понимаю — оно не всегда одинаковое?
— Нет, — отвечал Радикс, — конечно, не всегда. Очень легко найти пример двух совокупностей, или распределений, случайных явлений, у которых средняя будет одна и та же, а колебания случайностей вокруг нее будут разными. Представь себе, что на одной географической широте лежат две области, средняя годовая температура которых совпадает. Однако первая область представляет собой остров на море, а другая — часть пустыни среди громадного материка. Ясно, что климат второй области будет резко континентальным, то есть будет характеризоваться резкими колебаниями от жары к морозу, тогда как температура на острове будет сравнительно ровной.
— Ясно, — сказал Илюша. — Мне только не совсем понят-
— 468 —
но, почему температура относится к разряду случайных явлений. Разве можно температуру считать случайностью?
— Я не говорил, что температура есть явление случайного характера. Однако теория вероятностей занимается не только явлениями в точности случайного порядка, как, например, движение молекул раскаленного газа, диффузия и тому подобное; в ее ведении находятся и многие другие явления, где существо той или иной закономерности проявляется не с такой точностью, которую мы наблюдаем в соотношениях абсциссы и ординаты параболы, например, а с некоторыми колебаниями, или рассеянием.
— Значит, — сказал Илюша, — рассеяние может наблюдаться не только вокруг средней, но и вокруг некоторой кривой?
— Разумеется. Вот тебе простой пример. Урожай зависит от осадков. Если осадков будет мало, то есть будет засуха, то хлеба засохнут и урожай будет плохой. Но если осадков будет слишком много, то хлеба начнут гнить на корню и урожай тоже будет неважный. Следовательно, урожай поднимается от нуля вместе с осадками, увеличивается, доходит до максимума, когда осадков выпадает столько, сколько нужно, а затем, если осадков выпадает еще больше, то урожай уже начинает падать. Эту зависимость урожая от осадков нельзя в точности выразить какой-либо кривой (прежде всего потому, что ведь урожай зависит не только от осадков, а еще от целого ряда причин), но приблизительно можно изобразить или выразить хотя бы, например, той же параболой. Для такого примерного выражения (или апроксимации) есть свои способы. Особое свойство таких связей или зависимостей заключается в том, что вокруг некоторой основной тенденции наблюдаются более или менее интенсивные колебания, в силу чего такие зависимости (корреляционные, как у нас говорится) точно выражены быть нe могут и справедливы лишь в общем, в среднем. Только эта «средняя» в данном случае не постоянная, а переменная. Вот как… А кстати, знаешь ли ты конец знаменитой истории насчет мартышки и очков?
Повесть поэта-футуриста, стиховеда, популяризатора математики и писателя-фантаста С. П. Боброва (1889–1971) «Восстание мизантропов» — фантастика в декорациях авангардной прозы. Эту повесть иногда называют одной из первых советских утопий, но в той же мере она является и антиутопией, и гофманиадой, и опередившим свое время «постмодернистским» сочинением. В приложении к книге — воспоминания о С. Боброве М. Л. Гаспарова (1935–2005).
Неизвестная книга Сергея Боброва.К Бубера. Критика житейской философии. М., Центрифуга, 1918Из собрания библиотеки Стэнфордского Университета.Под редакцией М.Л. Гаспарова.http://ruslit.traumlibrary.net.
Источники1) http://elib.shpl.ru/ru/nodes/3533; http://ruslit.traumlibrary.net//book/futuristy-peta/futuristy-peta.html2) Вавилон: Вестник молодой литературы. Вып. 2 (18). - М.: АРГО-РИСК, 1993. Обложка Олега Пащенко. ISBN 5-900506-06-1. С.72-79. 3) Архив творчества поэтов «Серебряного века» http://slova.org.ru/bobrov/index/4) http://lucas-v-leyden.livejournal.com/ 5) Лица. Биографический альманах. Книга 1. Составитель: А.В. Лавров. СПб.: Феникс, Париж: Atheneum, 1992 г. Серия: Лица. Биографический альманах. ISBN: 5-85042-046-0, 5-85042-047-9.
Третья книга стихов, с иллюстрациями автора.Тексты представлены в современной орфографии.http://ruslit.traumlibrary.net.
Научная фантастика с уклоном в гофманиану и математику образца 1922 г.Автор - поэт-футурист, поэтому рассказ написан «языком будущего», чересчур красочно, необычно, с экстравагантными художественными образами.
Первая книга стихов С. Боброва осталась и самой знаменитой в его творчестве. Своей славой она во многом была обязана иллюстрациям Н. Гончаровой – десяти цветным двухстраничным литографиям. Поэт даже посвятил им специальную статью, помещенную в качестве послесловия. Техника цветной литографии в оформлении футуристической книги была применена впервые. Тираж 500 экз.https://ruslit.traumlibrary.net.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.