Коул К.С. (Cole, K.C.). «Вселенная и чашка чая: математика истины и красоты» (The Universe and the Teacup: Mathematics of Truth and Beauty). Великобритания: изд-во Abacus, 1999. Если вы думаете, что в цифрах нет ничего интересного, эта книга откроет для вас другую Вселенную, как и обещает ее название, истины и красоты.
Джителман Лайза, ред. (Gitelman, Lisa). «Необработанных данных не бывает» (‘Raw Data’ Is an Oxymoron). Кембридж: MIT Press, 2013. Если вам интересно, как подтасовывают факты, из этой книги вы узнаете об этом все.
Хафф Даррелл (Huff, Darrell). «Как лгать при помощи статистики» (How to Lie with Statistics). Нью-Йорк: Norton, W. W. & Company, 1993. Первая и лучшая книга о том, как ввести в заблуждение при помощи способа представления данных.
Даниэль Канеман (Kahneman, Daniel). «Думай медленно… Решай быстро» (Thinking, Fast and Slow). Лондон: Penguin Group, 2012. Интересное объяснение, написанное доступным языком, системы интуитивного, эвристического мышления и ее применения.
Даниэль Канеман и Гэри Клейн (Kahneman, Daniel and Gary Klein). «Условия проявления интуиции» (‘Conditions for Intuitive Expertise: A Failure to Disagree’). American Psychologist 64, № 6, 2009: 515–26. Два эксперта в области изучения «системы 1» и «системы 2» мышления написали совместную работу, в каких случаях можно доверять интуиции, а в каких лучше не стоит. Текст работы: http://bit.ly/DDdisagree
Майер-Шенбергер Виктор и Кеннет Кукьер (Mayer-Schonberger, Viktor and Kenneth Cukier). «Большие данные: революция, которая изменит то, как мы живем, работаем и думаем» (Big Data: A Revolution That Will Transform How We Live, Work, and Think). Boston Eamon Dolan/Houghton Mifflin Harcourt, 2013. Эта книга без профессиональных терминов объясняет основы теории больших данных. Прочитайте первую главу бесплатно: http://bit.ly/DDbigdata
Меклин Джон (Mecklin, John M.). «Тирания обычного человека» (‘The Tyranny of the Average Man’). International Journal of Ethics 28 (2), январь 1918: 240–52. Что скрывается за средними значениями? Эта статья, написанная почти 100 лет назад, положила начало активному обсуждению. Текст доступен по ссылке: http://bit.ly/DDtyranny.
Полос Джон Аллен (Paulos, John Allen). «Математика – это не мое» (Innumeracy). Нью-Йорк: Vintage Books, 1990. Объяснение математика, как мы неправильно понимаем большие и маленькие числа, степень риска и вероятность случайности и что с этим делать.
Рейчхелд Фредерик и Роб Марки (Reichheld, Frederick F. and Rob Markey). «Основной вопрос 2.0 (исправленное и дополненное издание): как компании с высоким индексом потребительской лояльности добиваются успеха в мире, где правят потребители» (The Ultimate Question 2.0 (Revised and Expanded Edition): How Net Promoter Companies Thrive in a Customer-Driven World). Бостон: Harvard Business Review Press, 2011. Что такое индекс потребительской лояльности Net Promoter Score и как его использовать, объясняют создатели системы.
Синх Саймон (Singh, Simon). «Симпсоны и их математические секреты» (The Simpsons and Their Mathematical Secrets). Великобритания: Bloomsbury Publishing, 2013. Вероятно, эта книга не поможет вам в управлении данными, но математические шутки, спрятанные в этом мультипликационном сериале, могут побудить вас пересмотреть его.
Вэриан Хэл (Varian, Hal R). «За пределами больших данных» (‘Beyond Big Data’). Business Economics 49 (1), 2014: 27–31. Главный экономист Google объясняет, как компания использует эксперименты.