Том 9. Загадка Ферма. Трехвековой вызов математике - [42]

Шрифт
Интервал

Однако нужно было преодолеть еще одно, последнее препятствие. Некоторые эллиптические кривые по-прежнему не поддавались. Именно тогда на горизонте снова возникла фигура Барри Мазура: именно его статья навела Уайлса на мысль изменить один из рассматриваемых параметров. Уайлс вспоминает:

«Я уточнял детали доказательства, время летело незаметно, и в тот день я даже забыл поесть. Настало время пить чай, я спустился с чердака, и Нада (жена Уайлса. — Примеч. автора) удивилась, почему я спустился так поздно… и я сказал, что, по-моему, доказал последнюю теорему Ферма. Я был уверен, что решение было у меня в руках. Джон Коутс, мой руководитель в Кембридже, через несколько дней собирался провести конференцию. Мне показалось, что именно эта конференция как нельзя лучше подойдет, чтобы представить мое доказательство. Это был мой старый дом, именно там я защитил докторскую».

Конференция в Кембридже должна была состояться через несколько дней, с 21 по 23 июня, и Уайлс неутомимо приводил в порядок результаты последних семи лет работы. Окончательный вариант рукописи насчитывал 200 страниц и был закончен как раз тогда, когда нужно было садиться на самолет и лететь в Великобританию.




Обложка видеокассеты с фильмом о последней теореме Ферма. Фильм был снят в июле 1993 года. В него вошли интервью с различными математиками, в частности, Эндрю Уайлсом и Кеном Рибетом.


Утреннее письмо

Англичанин Джон Хортон Конвей в 1993 году был ярчайшей звездой на кафедре математики Принстонского университета. Он был признанным экспертом в геометрии, теории групп и теории игр. Кроме того, он изобрел один из первых и самых популярных клеточных автоматов — игру «Жизнь». 23 июня Конвей, не изменявший привычке рано вставать, первым открыл двери кафедры. Несколько недель назад один из его коллег, Эндрю Уайлс, отправился на конференцию в Кембридж, и в течение уже нескольких дней до Конвея, активного члена международного математического сообщества, доносились самые разные слухи. Говорили, что Уайлс достиг выдающегося, удивительного результата, однако подробности были неизвестны. С первыми лучами утренней зари, осветившими горы бумаг и книг, которыми был заполнен его кабинет, Конвей включил компьютер, чтобы прочитать почту, пришедшую прошлой ночью. Одним из последних загрузилось письмо, написанное в 5 часов 53 минуты. Его тема звучала просто: «Уайлс доказал великую теорему Ферма».


«Эндрю, я все равно не понимаю»

Уайлс вернулся в Принстон в пятницу. Он чувствовал себя эмоционально опустошенным. «Почти семь лет я только и делал, что работал над этой задачей, — признался Уайлс. — И вскоре все отошло на второй план. Я забыл, каково это — вставать утром и думать о чем-то другом». На Уайлса обрушился шквал поздравлений. Некоторые благодарили его за то, что смогли при жизни увидеть доказательство теоремы Ферма. Резонанс был столь велик, что (небывалый случай!) американский журнал People включил Уайлса в список 25 самых интригующих людей года.

Достижение Уайлса еще было темой репортажей и телепередач, а научный мир уже приступил к неблагодарному, но необходимому занятию: доказательство должен был проверить комитет экспертов. Это было необходимо, чтобы подтвердить его правильность. Для такого сложного доказательства, окончательный вариант которого занимал почти 200 страниц, проверка могла занять несколько месяцев. Хотя в ходе подобных проверок не раз выявлялись грубые ошибки (например, как было за пять лет до этого с доказательством Мияоки), почти все считали, что это лишь простая формальность, учитывая, насколько тщательно Уайлс проверил свое доказательство. Никто также не думал, что доказательство будет полностью безошибочным: как правило, эксперты находят мелкие неточности, которые в большинстве случаев не влияют на ход решения и которые можно легко исправить.

Уайлс решил опубликовать доказательство в научном журнале «Математические открытия» (Inventiones Mathematicae), редактором которого был не кто иной, как Барри Мазур. Мазур поручил проверку группе экспертов, среди которых были Герд Фалтингс и Ник Кац. Последний весь июль и август строчку за строчкой проверял доказательство Уайлса, в частности, его третью главу объемом в 70 страниц. Каждый день проверка проходила по одному и тому же принципу: если Кац сомневался в каком-то этапе доказательства, он отправлял сообщение Уайлсу, который всегда с удовольствием отвечал. За исключением одного случая.

Кац проверил примерно две трети главы, когда не смог понять очередной этап доказательства. Он требовал применения сложного математического инструмента — системы Эйлера, которая была взята из работ Колывагина — Флаха. И Кац, и Уайлс проверили эту, одну из самых запутанных, частей доказательства во время придуманного ими курса.

На этот раз вместо письма по электронной почте Кац отправил свои вопросы по факсу. Уайлс ответил с привычной быстротой, Кац остался неудовлетворен ответом и повторил вопрос, добавив невинную фразу: «Эндрю, я все равно не понимаю». Они опять обменялись факсами, и снова безуспешно. В сентябре Уайлсу не осталось другого выбора, кроме как признать, что в доказательстве что-то не так.


Рекомендуем почитать
Урожаи и посевы

Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.