Том 9. Загадка Ферма. Трехвековой вызов математике - [41]
* * *
МИЯОКА ДОКАЗАЛ ПОСЛЕДНЮЮ ТЕОРЕМУ ФЕРМА
Ошибочное доказательство последней теоремы Ферма, предложенное Мияокой, базировалось на так называемой философии параллелизма. В рамках этой философии, основанной на общих принципах, которые сформулировал в 1970-е годы канадский математик Роберт Ленглендс в так называемой программе Ленглендса, задачи теории чисел предлагалось решать с использованием методов алгебраической геометрии. Именно таким образом немецкому математику Герду Фалтингсу удалось доказать гипотезу Морделла. Тот же Фалтингс был одним из экспертов, которые занимались проверкой доказательства, и именно он обнаружил ошибку в рассуждениях японского математика. Несмотря на отчаянные усилия Мияоки, исправить ошибку так и не удалось.
Роберт Ленглендс на 61-й годовщине математика Пьера Делиня в Принстоне, которая отмечалась в 2006 году.
>(фотография: С. Моззочи, Принстон, Нью-Джерси)
* * *
Однако, к разочарованию Уайлса, теория Ивасавы оказалась не столь полезной, как он рассчитывал. В его словах ясно читается разочарование:
«Я искренне верил, что иду по верному пути, но это не означало, что я мог бы достичь цели. Возможно, что нужные методы были бы… найдены в ближайшие сто лет. Поэтому, даже если бы я был на правильном пути, могло случиться так, что я жил не в том веке».
После пяти лет затворничества Уайлс решил немного развеяться и восстановить связь с бывшими коллегами, среди которых был и его руководитель, Джон Коутс. Он похвально отзывался о работе одного из своих учеников, Матиаса Флаха, — тот, используя результаты российского математика Виктора Колывагина, разработал мощный инструмент, который мог применяться для укрощения неподдающихся эллиптических уравнений. По словам Уайлса, казалось, что этот инструмент был «создан специально». Требовалось лишь расширить частичные результаты Колывагина — Флаха, чтобы охватить все случаи теоремы Ферма, и Уайлс принялся за дело с новой силой. После нескольких месяцев упорного труда, казалось, новая тактика начала приносить желаемые плоды, но Уайлса не покидали сомнения. Сложное доказательство основывалось на недавно созданном методе, о способах применения которого все еще велись споры. Пришло время посвятить других в секрет Уайлса и организовать небольшой заговор.
Помощником и осведомителем Уайлс выбрал своего сокурсника, эксперта в той области алгебры, которую использовали Флах и Колывагин. Ник Кац так вспоминает о моменте, когда Уайлс раскрыл ему суть проекта, над которым работал последние шесть лет: «Был январь 1993 года. Эндрю пришел ко мне во время вечернего чая и попросил зайти в его кабинет, чтобы обсудить один вопрос. Я не имел никакого представления, о чем могла пойти речь. Я зашел в его кабинет и закрыл за собой дверь. Он сказал, что близок к тому, чтобы доказать гипотезу Таниямы — Симуры. Я был изумлен. Это было что-то невероятное».
Уайлс выбрал Каца не только за его знания, но и потому, что был уверен: Кац сохранит все в тайне. И он не ошибся. Нужно было организовать совместную работу так, чтобы вместе обсуждать доказательство и рассматривать уравнения, но при этом не вызвать подозрений у коллег. Уайлс и Кац нашли остроумный выход. Первый объявил, что будет вести новый курс в докторантуре под названием «Вычисления на эллиптических кривых». Как и все подобные курсы, его могли посещать студенты и преподаватели. Программой курса было не что иное, как поэтапное изложение доказательства Уайлса. Кац записался на этот курс и мог спокойно проверять различные этапы доказательства, не вызывая никаких подозрений. Немногие докторанты, которые записались на курс, быстро перестали ходить на занятия: материал оказался для них слишком сложен. «На этом уровне, если вы не знаете, какова цель вычислений, то проследить за ними невозможно. Более того, следить за сложными выкладками трудно даже в том случае, когда вам известно, куда они ведут. Через несколько недель я остался единственным слушателем», — вспоминает Кац.
* * *
ОЗАРЕНИЯ
Во время работы над теорией Ивасавы применительно к доказательству теоремы Ферма Уайлс любил гулять у озера неподалеку от университета, чтобы расслабиться и, как говорил он сам, «дать подсознанию поработать». Уверенность в том, что подсознание всегда работает над решением задачи, присуща всем творческим личностям, и в особенности математикам. Французский математик Анри Пуанкаре живо описывает подобное озарение в тот миг, когда он понял, что фуксовы функции (позднее они получили название автоморфных) связаны с геометрией Лобачевского: «Тогда я уехал из Кана… чтобы записаться на геологическую экскурсию. События, произошедшие в пути, заставили меня забыть о моей работе по математике. <…> Мы переезжали с места на место на омнибусе. И ровно в тот момент, когда я поставил ногу на ступеньку, ко мне неожиданно пришла мысль, никак не связанная с тем, о чем я думал до этого. <…> По возвращении в Кан я спокойно проверил мою догадку».
* * *
Сотрудничество оказалось плодотворным, и, кроме того, Кац не мог найти в доказательстве Уайлса ни единой ошибки. Для пущей уверенности Уайлс посвятил в заговор еще одного человека — Питера Сарнака, своего коллегу по Принстонскому университету. «Думаю, что я вот-вот докажу последнюю теорему Ферма», — признался Уайлс потрясенному Сарнаку. «В ту ночь я не смог сомкнуть глаз», — признается последний.
Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.