Том 9. Загадка Ферма. Трехвековой вызов математике

Том 9. Загадка Ферма. Трехвековой вызов математике

На первый взгляд теорема Ферма кажется очень простой. Те, кто сталкиваются с ней впервые, обычно недоумевают: почему на протяжении 380 с лишним лет математики не могли ее доказать? Однако вскоре подобные иллюзии рассеиваются, и становится понятно: теорема Ферма — одна из сложнейших математических задач всех времен. Данная книга повествует не только о Пьере Ферма и его теореме, но также о британце Эндрю Уайлсе — гениальном математике, который бросил вызов грандиозной задаче и вышел из этой схватки победителем.

Жанр: Математика
Серии: -
Всего страниц: 46
ISBN: 978-5-9774-0625-3
Год издания: 2014
Формат: Полный

Том 9. Загадка Ферма. Трехвековой вызов математике читать онлайн бесплатно

Шрифт
Интервал

Предисловие

Когда мы объясняем кому-то теорему Ферма, то в ответ обычно слышим: «Ничего особенного». Формулировка этой теоремы столь проста, что сложно удержаться от искушения взять лист бумаги и проверить несколько чисел, позабыв на мгновение, что речь идет об одной из сложнейших математических задач всех времен. Одним из многих наивных, кто попался в эту ловушку, был британец Эндрю Уайлс. Ему не было и десяти лет, когда он увлекся этой теоремой и той историей, что ее окружает. Молодой человек бесстрашно приступил к доказательству теоремы, зная лишь немногим больше курса математики начальной школы, и, разумеется, ему пришлось отступить. Но, в отличие от многих, Уайлс, который впоследствии стал выдающимся математиком, упорно пытался снова и снова доказать теорему, посвятив ей всю свою жизнь. История этого гениального математика, одержимого доказательством единственной грандиозной задачи, — часть прекрасного и многогранного полотна, на котором изображена история теоремы Ферма. Рассказом об Эндрю Уайлсе начинается и заканчивается эта книга.

В первой главе мы перенесемся в 1993 год, когда Уайлс удивил весь мир, объявив, что ему удалось доказать знаменитую теорему. Самая известная и самая трудная математическая задача всех времен в конце концов была решена, и это удивительное достижение попало на первые полосы всех мировых газет. Увы, спустя некоторое время эксперты обнаружили ошибки в доказательстве. Однако казалось, что эти ошибки можно быстро исправить. Шли месяцы, а Уайлс, к которому было приковано внимание всего математического мира, по-прежнему хранил молчание.

Быть может, это был всего лишь заманчивый мираж? Неужели знаменитая теорема снова, как и на протяжении последних трех столетий, оказалась неприступной?

Во второй главе мы ненадолго оставим Уайлса, вернемся больше чем на 3000 лет назад и расскажем о математике в Древней Индии и Шумерии. Последняя теорема Ферма тесно связана со знаменитой ключевой теоремой геометрии — теоремой Пифагора. Ее открытие обычно приписывают греческому математику Пифагору, но в действительности она была известна в Азии и на Ближнем Востоке за много веков до него.

Третья глава — краткая биография нашего главного героя, Пьера де Ферма. Он был адвокатом по профессии и математиком по призванию. В его время научных журналов не существовало, открытия совершались одиночками, и о них становилось известно из переписки, например, таких выдающихся ученых, как сам Ферма, Блез Паскаль, Рене Декарт и братья Бернулли. Обрисовав столь увлекательную картину, в четвертой главе мы поговорим о том, как «Арифметика» Диофанта навела Ферма на мысль о его великой теореме, а также о попытках доказать ее на протяжении трех последующих веков, пока Уайлс не предложил окончательное доказательство. Наша история изобилует известными именами: мы упомянем Гаусса, «принца математиков»; Софи Жермен — женщину, которая выдавала себя за мужчину; мы расскажем о Леонарде Эйлере и Эваристе Галуа, об Эрнсте Куммере, о японских математиках Ютаке Танияме и Горо Симуре.

В пятой и последней главе подробно рассказывается о сольном восхождении Уайлса на этот математический Эверест, которое стало кульминацией тысячелетней истории математики.

Без знаний математики невозможно получить от нее истинное удовольствие. Только приложив умственные и волевые усилия, можно в полной мере осознать всю ее красоту. И тогда пейзаж, который открывается перед нами, сравним с красивейшей сонатой, с торжеством природы, с высшим из наслаждений. Мечта автора — чтобы по прочтении этой книги читатель открыл для себя новые уголки математики неземной красоты и в полной мере насладился ими. Понять какие-то темы будет совсем нетрудно, другие — чуть сложнее. Автор ставил перед собой цель изложить материал доступным образом, оставив наиболее затруднительные моменты для дополнительного изучения. Автор ставил задачу рассказать эту историю так, чтобы читатель заново пережил 380 с лишним лет, которые понадобились для окончательного доказательства великой теоремы Ферма.

Глава 1

Луч света в математическом замке

В 1997 году в научно-популярной программе NOVA Эндрю Уайлса спросили, как бы он описал семь лет настойчивых, граничащих с одержимостью поисков, которые завершились доказательством последней теоремы Ферма — самой знаменитой теоремы всех времен. Уайлс ответил:

«Вы входите в большой дом, и вас окружает тьма. Темно. Кромешная тьма. Вы то и дело натыкаетесь на мебель, но постепенно узнаёте, где что стоит. Наконец месяцев через шесть или около того вы нащупываете выключатель, и внезапно становится светло. Вы отчетливо видите, где вы. Затем вы переходите в следующую комнату и проводите там шесть месяцев во мраке»[1].

Этот «мрак», о котором говорит британский математик, не смогли преодолеть множество математиков в течение трех с половиной столетий. Теорема, сформулированная в 1630-е годы (точное время неизвестно) французом Пьером де Ферма (1601–1663), звучит так:

«Для любого натурального числа n > 2 уравнение

х>n + у>n = z>n

не имеет натуральных решений х, у и z».

Об этой теореме стало широко известно лишь тогда, когда сын Ферма, Саму эль, обнаружил ее на полях латинского издания «Арифметики» Диофанта. Это не столь удивительно, как может показаться, потому что Ферма посвящал большую часть времени профессиональной деятельности — адвокатуре и занимался наукой лишь в часы отдыха.


Рекомендуем почитать
Нареченная призрака

«Они не могли бы быть более разными. Улита была солнечной, чересчур активной, крепко сбитой, как и положено крестьянской дочери. Её волосы, как бы в отражение её натуры, были ярко-рыжими, а лицо и руки были «поцелованы солнцем» – щедро покрыты веснушками. Ярко-голубые глаза всегда смотрели с любопытством и сверкали озорными искорками. Снежана же была мучительно-стеснительной девочкой с белоснежной кожей, что было отчасти причиной для её имени, и тёмно-пепельными волосами, с золотистыми прядками. Её карие глаза всегда смотрели серьёзно, почти настороженно.


Бэкап

Опасайтесь своих желаний. Ведь иногда они исполняются. Кто из нас хотя бы раз в жизни не задумывался о возможности бессмертия? Питер Рыкоф, прошедший за девяносто три года долгий путь – от эмигранта, солдата, наемника, до миллиардера и владельца крупнейшей частной военной компании, готов отдать все состояние за шанс жить вечно. И вот он уже заключает контракт с таинственной корпорацией «Церебрум», но после операции, которая должна принести бессмертие, приходит в себя в морге, голый и босый. Кто-то должен ответить за обман.


Чертежи подводной лодки

Пуаро срочно вызвали нарочным курьером в дом лорда Эллоуэя, главы Министерства обороны и потенциального премьер-министра. Он направляется туда вместе с Гастингсом. Его представляют адмиралу сэру Гарри Уэрдэйлу, начальнику штаба ВМС, который гостит у Эллоуэя вместе с женой и сыном, Леонардом. Причиной вызова стала пропажа секретных чертежей новой подводной лодки. Кража произошла тремя часами ранее. Факты таковы: дамы, а именно миссис Конрой и леди Уэрдэйл, отправились спать в десять вечера. Так же поступил и Леонард.


Ледяной ветер азарта

Точно известно, что в разгар ссоры Горецкий ударил ножом Елохина. Но кто столкнул с обрыва Большакова? Что происходило на Острове, когда на него обшился тайфун? Почему рабочие, укладывающие нефтепровод, схватились за ножи? Почему решились на побег заключенные? Следователь Белоконь упрямо ищет ответы на эти вопросы, ибо закон торжествует, только опираясь на истину. А закон должен торжествовать всегда.


Урожаи и посевы

Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.