Том 9. Загадка Ферма. Трехвековой вызов математике - [4]
Кто сказал, что история математики не так уж важна? Именно история математики хранит истоки человеческой мысли, рассказывает, как развивались идеи и где найти ключи к пониманию будущего. Это основное средство изучения математики и к тому же еще одна возможность насладиться ее красотой. История загадки Ферма уходит корнями на много тысяч лет назад, в Шумерию и Древнюю Индию. Ее истоки хранит знаменитая теорема Пифагора, которая гласит, что если х и у — катеты прямоугольного треугольника, a z — его гипотенуза, то х>2 + у>2 = z>2.
Пифагор, несомненно, один из самых знаменитых математиков, а теорема Пифагора — одна из известнейших теорем. Тем удивительнее, что за несколько веков до его рождения эта теорема уже была известна. Настало время переименовать ее, но в честь кого ее следует назвать?
История, которую мы расскажем, начинается в 1800 году до н. э. близ Ларсы — крупного города шумеров, расположенного на юге современного Ирака. Тщательно размяв кусок глины, писец раскатывает его, чтобы получилась табличка. Он собирается написать на ней таблицу чисел, которая сохранится на много тысяч лет.
Примерно в 1922 году нью-йоркский издатель Джордж Артур Плимптон приобрел эту табличку у Эдгара Джеймса Бэнкса, торговца археологическими находками. Табличка находилась в неплохом состоянии, но справа посередине виднелась крупная трещина, а символы в верхнем левом углу было нельзя прочитать. И, что было еще интереснее, все указывало на то, что исходная табличка имела больший размер, поскольку левый край был неправильной формы, как будто обломан. Быть может, табличку повредили при раскопках? До нас дошла глиняная табличка размерами 13 x 9 x 2 см. Согласно Бэнксу, табличка была найдена в городе Сенкере (современное название Ларсы). Позднее исследователи сравнили стиль написания символов на этой и других табличках того времени и подтвердили, что Бэнкс не ошибся. Табличка датируется 1822–1784 годами до н. э. Иными словами, она была написана за несколько лет до захвата Ларсы войсками Хаммурапи в 1762 году до н. э. Плимптон умер в 1936 году и завещал эту табличку вместе со всей своей коллекцией Колумбийскому университету, где она хранится и поныне под номером 322. С тех пор эта табличка известна под названием Плимптон 322.
Табличка Плимптон 322.
В чем же загадка этой таблички? На ней в четыре столбца нанесены числа, записанные в системе счисления, которая отличается от нашей и имеет основание 60. Считается, что эта система, называемая шестидесятеричной, появилась в культуре шумеров в третьем тысячелетии до нашей эры и позднее была заимствована вавилонянами. Мы используем ее и сейчас при измерении времени, углов и географических координат. Десятичная и шестидесятеричная системы уживаются рядом: час делится на 60 минут, минута — на 60 секунд, но секунды делятся на десятые, сотые и тысячные доли уже в десятичной системе счисления. Несмотря на свое удобство, десятичная система не смогла полностью заменить шестидесятеричную, которую придумали наши предки шумеры. Окружность по-прежнему делится на 360 градусов, как и тысячи лет назад. Звездные часы послужили моделью для наручных часов, и даже современные цифровые часы по-прежнему имитируют движение стрелки по окружности, разделенной на 60 частей. Десятичная система используется уже много лет и даже веков, но сутки по-прежнему делятся на 24 часа.
Почему же шумеры использовали шестидесятеричную систему счисления? Число 60 не перестает удивлять нас своими замечательными свойствами. Одно из самых заметных его свойств — это большое количество делителей. Оно без остатка делится на двенадцать чисел: 1, 2, 3, 4, 3, 6, 10, 12, 15, 20, 30, 60. Ни одно из чисел, меньших 60, не имеет столько делителей. Это свойство особенно удобно при работе с дробями, так как вычисления заметно упрощаются. В то время не существовало вычислительных машин, и все, что могло упростить вычисления, было как нельзя кстати.
Многие математики считают, что удивительных свойств числа 60 достаточно, чтобы понять, почему же древние шумеры использовали шести десятеричную систему счисления.
Число 60 также тесно связано с простыми числами. Начнем с того, что оно находится между двумя простыми числами-близнецами (59 и 61) и является суммой двух простых чисел-близнецов (29 + 31). Его также можно представить в виде суммы четырех последовательных простых чисел (11 + 13 + 17 + 19).
Возможно, удивительнее всего то, что 60 — наименьшее число, которое можно получить в виде суммы двух простых чисел шестью разными способами. Это показано в таблице ниже.
Уже в IV веке Теон Александрийский предположил, что число 60 было выбрано как основание системы счисления потому, что это наименьшее число, которое делится на 1, 2, 3, 4, 5 и 6. Развивая эту мысль, математик Дж. Г. ван дер Галиен показал, что если n — целое положительное число, делители которого, меньшие √n, являются последовательными числами, то n либо простое, либо удвоенное простое число, либо одно из чисел 1, 8, 12, 24, 60. Значит, 60 — наибольшее составное число, первые делители которого, не превышающие √
Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.