Том 9. Загадка Ферма. Трехвековой вызов математике - [37]
Друзей объединял интерес к последним открытиям на международной математической арене, и в 1955 году они решили организовать симпозиум по теории чисел и пригласить авторитетных математиков со всего мира. Из 36 задач, представленных вниманию участников симпозиума, четыре предложил Танияма. В них очень смутно описывалась связь между модулярными формами, которые на тот момент не привлекали большого внимания специалистов, и диофантовыми уравнениями. Танияма заметил, что члены E-ряда для некоторых эллиптических уравнений точно соответствуют членам М-ряда для определенных модулярных форм, но не мог объяснить фундаментальных причин этого любопытного совпадения.
На симпозиуме обсуждались эти и другие вопросы. По некоторым источникам, блестящий французский математик Андре Вейль в неформальной беседе с Таниямой подсказал ему, что он обнаружил глубокую общую взаимосвязь между модулярными формами и эллиптическими уравнениями. Позднее было показано, что в действительности все было не совсем так. Однако ошибочная трактовка событий настолько укоренилась, что гипотезу Таниямы — Симуры стали называть гипотезой Симуры — Вейля или Таниямы — Симуры — Вейля. Эту ошибку лишь много лет спустя устранил американский математик Серж Ланг, который восстановил истинное положение вещей.
Как бы то ни было, первое предположение Таниямы, высказанное в очень расплывчатой форме, не вызвало большого интереса. Единственным, кто изначально считал эту догадку очень важной, был верный друг Таниямы Симура. Много лет друзья вместе работали над этой гипотезой, стремясь точнее сформулировать ее.
В 1957 году Симуру пригласили работать в Принстон. Он считал, что там сможет обменяться опытом с уважаемыми специалистами и продолжить работу над темой, но трагические события помешали реализации этого амбициозного проекта. 17 ноября того же года Танияма решил покончить с собой. В предсмертной записке он написал: «До вчерашнего дня у меня не было цели покончить с собой. <…> Причину моего самоубийства я не могу и сам понять, но это не результат какого-то конкретного события, нет никаких особенных причин. Единственное, что я точно знаю, — я потерял веру в будущее. <…> Во всяком случае, я не могу отрицать, что это будет предательством с моей стороны, но прошу простить меня за это последнее осознанное действие, которое я совершаю в своей жизни». Ему было 35 лет.
Его кончина не поколебала решимости Симуры, который хотел завершить общее дело в память о своем гениальном друге. В течение многих лет Симура уточнял гипотезу, которая в упрощенном виде гласит, что все эллиптические кривые являются модулярными. Со временем эта гипотеза стала известна под названием гипотезы Таниямы — Симуры. Как сказал американский математик Барри Мазур (о нем мы поговорим немного позже), это была «удивительная гипотеза… но в тот момент ее проигнорировали, так как она слишком опередила свое время. Когда она была представлена, никто не решился доказать ее, столь противоречивой она была. Она объединяет два мира: мир эллиптических кривых и мир модулярных форм. Эти разделы математики были очень подробно изучены, но по отдельности. И вдруг появилась гипотеза Таниямы — Симуры, которая навела на мысль о существовании связующего звена между этими двумя мирами. Математики любят наводить мосты…»
Танияма не дожил до того дня, когда его гениальная догадка оформилась в один из красивейших результатов современной математики. Теперь имена Таниямы и его друга Симуры занимают почетное место в истории математики, и, что более удивительно, их работа заложила фундамент для доказательства самой знаменитой теоремы в теории чисел и математике в целом.
В глазах математического сообщества гипотеза Таниямы — Симуры и последняя теорема Ферма не имели ничего общего, разве что обе они являлись гипотезами. Но, как мы уже заметили, поиск соотношения между на первый взгляд совершенно разными понятиями, никак не связанными между собой, — одна из главных задач математики. В данном конкретном случае неожиданные параллели обнаружил немецкий математик Герхард Фрай, который занимался теорией чисел. Его привлекала взаимосвязь между этой областью и алгебраической геометрией, и блестящим примером этому служила гипотеза Таниямы — Симуры. В 1978 году он ознакомился с работами американского математика Барри Мазура и был очень впечатлен ими. В них устанавливалась связь между такими понятиями, как модулярность и эллиптические кривые, и Фрай стал работать над тем, чтобы сделать эту взаимосвязь более явной (исходная статья Мазура по этой теме называлась «Модулярные кривые и идеал Эйзенштейна», и среди наиболее увлеченных ее читателей были Кен Рибет и Эндрю Уайлс). Фрай начал вынашивать удивительную идею, которую постарался окончательно оформить за те несколько недель, пока был в Гарварде, где преподавал Мазур. Наконец, в 1984 году на нескольких математических конференциях, прошедших в районе Обервольфах в Германии, Фрай сформулировал гипотезу, которая открыла новый, революционный путь к доказательству последней теоремы Ферма.
Его гипотеза звучала так: пусть дано произвольное решение уравнения этой теоремы, например,
Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
Как помочь ребенку полюбить математику? Эта книга поможет вам и вашим детям взглянуть по-новому на изучение математики, закрыть пробелы в знаниях и превратить учёбу в удовольствие.
Математика может учить логике только тогда, когда преподавание включает творческий подход к решению интересных задач. Эта книга для тех, кто хочет обучать математике так, чтобы у учеников горели глаза.
Диалоги о математике, предлагаемые вниманию советских читателей, первоначально опубликованные в некоторых физических и философских журналах, впоследствии составили книжку, изданную на венгерском, немецком, английском и других европейских языках. И статьи и сборник вызвали большой интерес среди широких кругов читателей не только благодаря оригинальной форме изложения, но и вследствие довольно глубокой трактовки методологических вопросов математики. Книгу читали не только математики, физики, биологи, инженеры, но и школьники.
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки. Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.