Том 9. Загадка Ферма. Трехвековой вызов математике - [36]
Второй мир: модулярные функции
Модулярные формы в значительной степени являются творением Анри Пуанкаре, одного из самых выдающихся ученых всех времен, просветителя и философа науки. Так, некоторые его работы по математической физике непосредственно предшествовали теории относительности Эйнштейна. Пуанкаре был последним математиком, который обладал глубокими знаниями во всех разделах математики своего времени.
Сейчас это невозможно, так как современная математика охватывает слишком большое количество областей. Пуанкаре, который уже в юном возрасте стал известным математиком, обладал, подобно Эйлеру и Гауссу, фотографической и великолепной пространственной памятью. Возможно, это объясняет его успехи в созданной им дисциплине, топологии, которая изучает пространственные свойства объектов, остающиеся неизменными при определенных преобразованиях. Топология — царство, где правит симметрия, и очень немногие математические объекты обладают столь обширной симметрией, как модулярные формы.
Французская марка, посвященная Жюлю Анри Пуанкаре.
* * *
ПОСЛЕДНЯЯ ТЕОРЕМА ПУАНКАРЕ
Хотя ни одной из теорем не удалось стать такой же известной, как великая теорема Ферма, в математике существует несколько гипотез, доказательство каждой из которых становится настоящим историческим событием. Среди них — гипотеза Гольдбаха и «первая среди равных» гипотеза Римана, которые относятся к теории чисел, а также задача о равенстве классов Р и NP — ключевая задача вычислений. В топологии такой важной задачей является так называемая гипотеза Пуанкаре. К удивлению многих, в 2002–2003 годах российский математик Григорий Перельман опубликовал схему доказательства этой гипотезы, которое затем было дополнено другими учеными и в 2006 году было официально признано верным. Перельман, блестящий и в такой же степени экстравагантный математик, отказался от присужденной ему в том же году Филдсовской премии и, ссылаясь на то, что научный мир погряз в нечестности, спустя некоторое время полностью оставил математику. Как и для остальных задач, включенных Институтом Клэя в 1999 году в список семи задач тысячелетия, доказательство гипотезы Пуанкаре было оценено в один миллион долларов. В 2010 году Перельман отказался от этого вознаграждения.
Филдсовская медаль, от которой отказался Перельман, была присуждена ему за доказательство гипотезы Пуанкаре.
* * *
Получить какое-то визуальное представление модулярной формы невозможно. Достаточно сказать, что она находится в четырехмерном пространстве, которое подчиняется законам геометрии, мало похожим на привычные нам. В повседневной жизни нам известно, что через точку, не лежащую на данной прямой, можно провести единственную прямую, параллельную данной, о чем писал еще Евклид. Однако начиная с XIX века известно, что это утверждение не является необходимым и продиктовано лишь соображениями удобства. Можно определить альтернативную геометрию, в которой параллельных прямых не существует вовсе либо, напротив, через данную точку можно провести бесконечно много прямых, параллельных данной. В последнем случае речь идет о так называемой гиперболической геометрии, в которой плоскость, представленная в двух измерениях, принимает следующие формы:
Параллельные линии в гиперболической геометрии.
В своеобразном мире гиперболической геометрии, где обитают модулярные формы, они обладают удивительными свойствами симметрии, подобно редчайшим цветам. Для определения модулярных форм математики используют так называемые бесконечные М-ряды, каждому из элементов которых соответствует число, означающее количество «ингредиента» 1, 2, 3, … модулярной формы.
Связующее звено: гипотеза Таниямы — Симуры
В середине 1950-х годов Япония все еще пыталась оправиться от последствий Второй мировой войны. Экономика страны понемногу восстанавливалась, но жизнь по-прежнему была непростой. От недостатка средств пострадали и университеты. Оплачиваемых должностей научных сотрудников было немного, и за них разворачивалась жесткая конкуренция. Если сфера интересов исследователя была слабо связана с практикой, то ситуация становилась еще сложнее. Трудности, которые предстояло преодолеть тем, кто хотел заниматься чистой математикой, могли охладить пыл даже самых настойчивых кандидатов.
Этих трудностей не испугался молодой Ютака Танияма, восьмой ребенок в семье провинциального врача. Из-за враждебности окружающих и проблем со здоровьем ему пришлось в юном возрасте переехать в столицу без средств к существованию, чтобы поступить в университет и продолжить занятия математикой. В 1954 году он подружился с выдающимся коллегой, Горо Симурой, который был на год старше. Друзья часто встречались в дешевых кафе, чтобы обсудить вопросы теории чисел — наиболее привлекательной области для них обоих. Сложно было подобрать более разных по характеру людей: Танияма был очень рассеян, работал урывками, по ночам, и настолько не интересовался чем-либо помимо математики, что его считали эксцентричным. Симура вставал очень рано и начинал работать на рассвете, был организованным и педантичным. В отличие от своего друга, который постоянно носил один и тот же серый костюм и никогда не завязывал шнурков, Симура следил за внешним видом и свободно общался с другими коллегами.
Математика может учить логике только тогда, когда преподавание включает творческий подход к решению интересных задач. Эта книга для тех, кто хочет обучать математике так, чтобы у учеников горели глаза.
Перед читателями проходит история возникновения и развития основных идей геометрии, которые и сегодня приводят к новым взглядам и открытиям в кристаллографии, химии, геологии, генетике, микробиологии, архитектуре, строительстве, технике. Плоское и объемное, свойства кристаллов и правильных тел, симметрия, замкнутость и бесконечность Вселенной — эти темы-мелодии сливаются в книге в некий гимн во славу Геометрии. Для иллюстрирования книги использованы гравюры голландского графика М. К. Эсхера, геометрические по своему содержанию. Научно-художественная книга для широкого круга читателей.
Диалоги о математике, предлагаемые вниманию советских читателей, первоначально опубликованные в некоторых физических и философских журналах, впоследствии составили книжку, изданную на венгерском, немецком, английском и других европейских языках. И статьи и сборник вызвали большой интерес среди широких кругов читателей не только благодаря оригинальной форме изложения, но и вследствие довольно глубокой трактовки методологических вопросов математики. Книгу читали не только математики, физики, биологи, инженеры, но и школьники.
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки. Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Знание математики приобретает особое значение в нашу цифровую эпоху. Рассказывая о прошлом, настоящем и будущем математической мысли и о первооткрывателях важнейших математических законов, известный австрийский ученый и популяризатор науки Рудольф Ташнер посвящает нас не только в тайны цифр и чисел, но и шире — в тайны познания. «Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.