Том 9. Загадка Ферма. Трехвековой вызов математике - [38]
Хотя идеи Фрая были очень привлекательными, было ясно, что его гипотеза все еще недостаточно конкретна, чтобы другие математики могли заняться ее доказательством. Для окончательного оформления предположения немецкого математика в виде гипотезы, требовались «математические мускулы». Говоря о «математических мускулах» в контексте математики последних 75 лет, невозможно обойти вниманием французского математика Жан-Пьера Серра (р. 1926). Он — один из всего двух математиков (второй — американец Джон Григгс Томпсон), которые были удостоены двух престижнейших премий по математике: Филдсовская премия была вручена Серру в 1954-м, а Абелевская — в 2003 году. Серр — самый молодой из лауреатов Филдсовской премии: он получил ее в возрасте 27 лет. Его достижение равносильно получению двух Нобелевских премий.
Французский математик Жан-Пьер Серр на церемонии вручения Абелевской премии 3 июня 2003 года
> (фотография предоставлена Институтом Абеля)
Серр, который в 1955 году участвовал в семинаре, проводимом Таниямой и Симурой, заинтересовался гипотезой Фрая и написал письмо своему коллеге и соотечественнику Жан-Франсуа Местру. Позднее он оформил это письмо в виде статьи. В этой статье он использовал формулировки, несколько отличающиеся от тех, которыми пользовался Фрай (заполнив пробелы с помощью так называемых модулярных представлений Галуа), и предположение Фрая официально стало считаться гипотезой. Если эта гипотеза, получившая название эпсилон-гипотезы, была верна, то между гипотезой Таниямы — Симуры и великой теоремой Ферма устанавливалась следующая взаимосвязь: если первая была верной, то вторая — ложной, и наоборот.
* * *
РУКА, КАЧАЮЩАЯ КОЛЫБЕЛЬ
Американец Барри Мазур (р. 1937) — одна из наиболее выдающихся фигур в теории чисел последних лет. Во многом благодаря его статье «Модулярные кривые и идеал Эйзенштейна» на модулярность снова обратили внимание молодые математики, в частности, Фрай, Рибет и Уайлс. Мазур называл теорию чисел разделом математики, где «без всяких усилий появляется бесчисленное множество задач. Они, как цветы, приятно пахнут, но их шипы больно колют любого, кто пытается прикоснуться к ним».
ГЕРХАРД ФРАЙ, МАТЕМАТИК И КРИПТОАНАЛИТИК
Фрай родился в 1944 году в немецком округе Тюбинген. Он поступил в местный университет, где занимался физикой и математикой. Его специализацией была теория чисел. Среди его наиболее важных достижений, помимо эпсилон-гипотезы, — метод, известный как спуск Вейля, используемый для решения эллиптических кривых на конечных полях. Открытие этого метода положило конец одному из перспективных направлений криптографии.
* * *
От гипотезы к теореме
Привлекательность эпсилон-гипотезы была такова, что попытки доказать ее предпринимали все специалисты по теории чисел. Среди них был блестящий молодой математик из США Кеннет Рибет, еще в 1985 году получивший должность профессора в Калифорнийском университете в Беркли. Рибет учился у Мазура в Гарварде, где защитил докторскую диссертацию. Он, как и его учитель, был очарован тем, что между теорией чисел и алгебраической геометрией существует удивительная связь, которую в свое время открыл Куммер, и что эта связь может повлиять на способ доказательства теоремы Ферма. Рибет занялся доказательством эпсилон-гипотезы и наконец увидел свет в конце туннеля. Предоставим ему слово:
«Я был абсолютно поражен. Я вернулся домой, спотыкаясь, будто витая в облаках. Я сел и снова проверил все доказательство и увидел, что оно было верно, действительно верно. Я посетил конференцию (Международный конгресс математиков, который проводился в университете Беркли, Сан-Франциско, в 1986 году. — Примеч. автора), рассказал об этом немногим, и вскоре об этом узнали почти все. Ко мне подходили и спрашивали: „Вы правда доказали эпсилон-гипотезу?“ Я помедлил около минуты и вдруг сказал: „Да. Я доказал ее“».
Это простое, искреннее признание помогает понять, что может происходить в голове у математика, когда он находит посреди океана неведения крупицу истины, подлинной истины, ведь математик как никто другой стремится к истине в самом точном и абсолютном смысле этого слова. Сам Рибет позднее вспоминал, что когда был докторантом, то говорил о великой теореме Ферма, перефразируя Гаусса: «Это одна из тех задач, о которых нельзя сказать ничего полезного». В то время Рибет не подозревал, какую роль в ее доказательстве сыграет его работа всего через несколько лет. Эпсилон-гипотеза ушла в прошлое — на смену ей пришла теорема Рибета. Теперь к доказательству последней теоремы Ферма могли приступить математики последнего поколения.
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки. Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Знание математики приобретает особое значение в нашу цифровую эпоху. Рассказывая о прошлом, настоящем и будущем математической мысли и о первооткрывателях важнейших математических законов, известный австрийский ученый и популяризатор науки Рудольф Ташнер посвящает нас не только в тайны цифр и чисел, но и шире — в тайны познания. «Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой.
Если вы хотите поразить одноклассников молниеносным решением квадратных уравнений [КУ], давайте развлечемся.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.
Уже несколько десятилетий тема искусственного интеллекта занимает умы математиков и людей, далеких от науки. Ждать ли нам в ближайшем будущем появления говорящих машин и автономных разумных систем, или робот еще не скоро сравнится с человеком? Что такое искусственный интеллект и возможно ли в лабораторных условиях создать живой разумный организм? Ответы на эти и многие другие вопросы читатель узнает из данной книги. Добро пожаловать в удивительный мир искусственного интеллекта, где математика, вычисления и философия идут рука об руку.