Том 9. Загадка Ферма. Трехвековой вызов математике - [38]

Шрифт
Интервал

+ b = с. Тогда существует эллиптическая кривая вида у>2 = х(х — а>p)(х + b>p), где а, b и с — целые, положительные и взаимно простые, а р — простое число, большее 2. Эта кривая принадлежит к особой группе эллиптических кривых, названных позднее кривыми Фрая и обладающих очень интересной особенностью: они не являются модулярными. Но гипотеза Таниямы — Симуры утверждала, что все эллиптические кривые являются модулярными. Отсюда следует, что если гипотеза Таниямы — Симуры верна, то «отклонений», подобных кривым Фрая, то есть кривых, которые одновременно являются эллиптическими и немодулярными, не существует. Если же гипотеза Фрая была верна, учитывая, что все возможные решения уравнения теоремы Ферма представляли собой кривую Фрая, то гипотеза Таниямы — Симуры о несуществовании таких кривых означала бы, что уравнение теоремы не имеет решений, следовательно… теорема Ферма доказана! Как мы увидим чуть позже, эта неожиданная связь между гипотезами стала для Уайлса точкой опоры, на которой основывалось его доказательство.

Хотя идеи Фрая были очень привлекательными, было ясно, что его гипотеза все еще недостаточно конкретна, чтобы другие математики могли заняться ее доказательством. Для окончательного оформления предположения немецкого математика в виде гипотезы, требовались «математические мускулы». Говоря о «математических мускулах» в контексте математики последних 75 лет, невозможно обойти вниманием французского математика Жан-Пьера Серра (р. 1926). Он — один из всего двух математиков (второй — американец Джон Григгс Томпсон), которые были удостоены двух престижнейших премий по математике: Филдсовская премия была вручена Серру в 1954-м, а Абелевская — в 2003 году. Серр — самый молодой из лауреатов Филдсовской премии: он получил ее в возрасте 27 лет. Его достижение равносильно получению двух Нобелевских премий.



Французский математик Жан-Пьер Серр на церемонии вручения Абелевской премии 3 июня 2003 года

> (фотография предоставлена Институтом Абеля)


Серр, который в 1955 году участвовал в семинаре, проводимом Таниямой и Симурой, заинтересовался гипотезой Фрая и написал письмо своему коллеге и соотечественнику Жан-Франсуа Местру. Позднее он оформил это письмо в виде статьи. В этой статье он использовал формулировки, несколько отличающиеся от тех, которыми пользовался Фрай (заполнив пробелы с помощью так называемых модулярных представлений Галуа), и предположение Фрая официально стало считаться гипотезой. Если эта гипотеза, получившая название эпсилон-гипотезы, была верна, то между гипотезой Таниямы — Симуры и великой теоремой Ферма устанавливалась следующая взаимосвязь: если первая была верной, то вторая — ложной, и наоборот.

* * *

РУКА, КАЧАЮЩАЯ КОЛЫБЕЛЬ

Американец Барри Мазур (р. 1937) — одна из наиболее выдающихся фигур в теории чисел последних лет. Во многом благодаря его статье «Модулярные кривые и идеал Эйзенштейна» на модулярность снова обратили внимание молодые математики, в частности, Фрай, Рибет и Уайлс. Мазур называл теорию чисел разделом математики, где «без всяких усилий появляется бесчисленное множество задач. Они, как цветы, приятно пахнут, но их шипы больно колют любого, кто пытается прикоснуться к ним».


ГЕРХАРД ФРАЙ, МАТЕМАТИК И КРИПТОАНАЛИТИК

Фрай родился в 1944 году в немецком округе Тюбинген. Он поступил в местный университет, где занимался физикой и математикой. Его специализацией была теория чисел. Среди его наиболее важных достижений, помимо эпсилон-гипотезы, — метод, известный как спуск Вейля, используемый для решения эллиптических кривых на конечных полях. Открытие этого метода положило конец одному из перспективных направлений криптографии.



* * *

От гипотезы к теореме

Привлекательность эпсилон-гипотезы была такова, что попытки доказать ее предпринимали все специалисты по теории чисел. Среди них был блестящий молодой математик из США Кеннет Рибет, еще в 1985 году получивший должность профессора в Калифорнийском университете в Беркли. Рибет учился у Мазура в Гарварде, где защитил докторскую диссертацию. Он, как и его учитель, был очарован тем, что между теорией чисел и алгебраической геометрией существует удивительная связь, которую в свое время открыл Куммер, и что эта связь может повлиять на способ доказательства теоремы Ферма. Рибет занялся доказательством эпсилон-гипотезы и наконец увидел свет в конце туннеля. Предоставим ему слово:

«Я был абсолютно поражен. Я вернулся домой, спотыкаясь, будто витая в облаках. Я сел и снова проверил все доказательство и увидел, что оно было верно, действительно верно. Я посетил конференцию (Международный конгресс математиков, который проводился в университете Беркли, Сан-Франциско, в 1986 году. — Примеч. автора), рассказал об этом немногим, и вскоре об этом узнали почти все. Ко мне подходили и спрашивали: „Вы правда доказали эпсилон-гипотезу?“ Я помедлил около минуты и вдруг сказал: „Да. Я доказал ее“».

Это простое, искреннее признание помогает понять, что может происходить в голове у математика, когда он находит посреди океана неведения крупицу истины, подлинной истины, ведь математик как никто другой стремится к истине в самом точном и абсолютном смысле этого слова. Сам Рибет позднее вспоминал, что когда был докторантом, то говорил о великой теореме Ферма, перефразируя Гаусса: «Это одна из тех задач, о которых нельзя сказать ничего полезного». В то время Рибет не подозревал, какую роль в ее доказательстве сыграет его работа всего через несколько лет. Эпсилон-гипотеза ушла в прошлое — на смену ей пришла теорема Рибета. Теперь к доказательству последней теоремы Ферма могли приступить математики последнего поколения.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.