Предисловие к русскому изданию
Книга и ее автор
Диалоги о математике, предлагаемые вниманию советских читателей, первоначально опубликованные в некоторых физических и философских журналах, впоследствии составили книжку, изданную на венгерском, немецком, английском и других европейских языках. И статьи и сборник вызвали большой интерес среди широких кругов читателей не только благодаря оригинальной форме изложения, но и вследствие довольно глубокой трактовки методологических вопросов математики. Книгу читали не только математики, физики, биологи, инженеры, но и школьники. Каждой категории читателей она давала пищу для размышлений. В ней читатели находили ответы на многие принципиальные вопросы, возникавшие при встречах и беседах автора с учеными — физиками, математиками и биологами.
Почти двадцать пять столетий математика существует не как сборник практических рецептов, а как дедуктивная наука, в которой огромное количество содержательных результатов выводится логическим пугем из ничтожного количества предложений — аксиом. Естественно, что и в самой математике и в философии с древних времен возникали и обсуждались многочисленные животрепещущие проблемы:
Каков предмет математики?
Каково ее отношение к действительности?
Как возникают ее понятия?
Каким образом математическое абстрагирование естественнонаучной или инженерной проблемы позволяет проникать глубже и точнее в течение явлений, чем непосредственное их наблюдение и экспериментальное изучение?
Какое значение имеет разработка специфического научного языка для развития самой математики и ее применений к реальным проблемам?
Все эти вопросы, а также многие другие продолжают волновать человечество и сегодня. Как и две тысячи лет назад, представители различных философских направлений отвечают на них по-разному.
Альфред Реньи, будучи убежденным материалистом, превосходным знатоком естествознания и современной математики, дает на многие философские вопросы математики определенные и обоснованные ответы. Особую силу воздействия его «Диалоги» приобретают из-за формы изложения, которая, к сожалению, почти полностью забыта современными авторами. Реньи не поучает читателя, не стремится просто вложить в него собственные мысли, а как бы беседует с ним, заранее предугадывает возможные сомнения и возражения и вкладывает их в уста собеседников. В результате читатель сам становится участником диалога — предмет изложения перестает быть чем-то внешним, навязываемым ему извне; читатель начинает воспринимать обсуждаемые проблемы как свои внутренние, близкие его интересам.
Форма диалога, так удачно использовавшаяся еще в древности Платоном, а позднее Галилеем и многими другими учеными, писателями и философами, оказалась хорошо приспособленной и к обсуждаемым проблемам. Благодаря литературному дарованию автора и прекрасному знанию им литературы и истории книжка получилась весьма интересной.
Имена собеседников в каждом из диалогов знакомы нам из истории науки. Однако в диалогах не нужно искать абсолютной исторической точности. История служит лишь канвой, фоном, на котором так естественно развивается изложение материала. Исторический фон позволяет держать читателя в постоянном напряжении. И никакого Значения не имеет то обстоятельство, что царь Гиерон уже не жил в те дни, когда Рим напал на маленькие Сиракузы. Несомненно, Архимед и Гиерон не вели беседы, о которой мы читаем во втором диалоге. Но она могла бы состояться, поскольку ее содержание, а также высказываемые Архимедом идеи и положения относительно сущности прикладной математики и роли математики в человеческом познании близки духу его творчества.
Сейчас больше, чем когда-либо в прошлом, важно выяснить особенности прикладной математики. К сожалению, даже среди весьма способных математиков, интересующихся лишь абстрактно-теоретическими вопросами, существует своеобразное презрение к занятиям математика-прикладника. Они полагают, что прикладными вопросами способны заниматься лишь бесталанные люди, которые не могут дать ничего полезного абстрактной математике. Это ошибочная и, несомненно, вредная точка зрения.
В диалоге о применениях математики Архимед высказывает очень современные нам и важные мысли о месте и роли математика-прикладника как в познании природы, так и в развитии самой математики. Математик-прикладник — не узкий ремесленник, а творец очень высокого ранга. Ему необходимо не только знакомство с математикой, ко и глубокое знание предмета прикладного исследования. Он должен создать математическую модель изучаемого явления и найти, а в ряде случаев просто изобрести новые методы математического исследования. Последние годы дают нам многочисленные примеры, когда вопросы практики, даже очень узкие и недостаточно четко сформулированные, приводили к созданию новых областей математических исследований и к глубокому преобразованию наших взглядов на содержание и задачи математики. К этому вопросу мы еще вернемся.