Диалоги о математике - [4]
Астрономы и физики раньше других поняли, что математические методы для них не только способы вычислении, но и один из основных путей проникновения в существо изучаемых ими закономерностей. В паше время математизация знаний совершает своеобразный победный марш. В результате многие науки и области знания, до самого последнего времени находившиеся вдали от использования математических средств, теперь усиленно стремятся наверстать упущенное. Причина такого внимания к математике, конечно, не в преходящей моде, а в том, что качественное изучение явлений природы, техники, экономики зачастую оказывается недостаточным. Как можно создать автоматически работающую вычислительную машину, если имеются только общие представления о длительности последействия передаваемых импульсов на элементы? Как можно автоматизировать процесс выплавки стали или крекинга нефти без знания точных количественных закономерностей этих процессов? Вот почему автоматизация вызывает дальнейшее развитие математики, оттачивание ее методов для решения огромного числа новых и трудных проблем.
Роль математики в развитии других наук и в практических областях деятельности человека невозможно установить на все времена. Изменяются не только те вопросы, которые требуют скорейшего разрешения, но и характер решаемых задач. Ленинский тезис об отсутствии абсолютного знания, о постепенном приближении наших сведений о природе к истинным закономерностям, господствующим в ней, относится и к математическому знанию. Создавая математическую модель реального процесса, мы неизбежно упрощаем его и изучаем лишь приближенную его схему. По мере уточнения наших знаний и выяснения роли ранее не учтенных факторов удается сделать более полным математическое описание процесса. Процедуру уточнения нельзя ограничить, как нельзя ограничить развитие самого знания. Математизация науки состоит не в том, чтобы исключить из процесса познания наблюдение и эксперимент. Они являются непременными составными частями полноценного изучения явлений окружающего нас мира. Смысл математизации знаний состоит в том, чтобы из точно сформулированных исходных предпосылок выводить следствия, доступные непосредственному наблюдению; с помощью математического аппарата не только описывать установленные факты, но и предсказывать новые закономерности, прогнозировать течение явлений, а тем самым получать возможность управления ими. Если эти предсказания оправдываются, теория укрепляет свое положение и продолжает дальнейшие выводы. Но рано или поздно, поскольку математическая теория того или иного реального явления всегда приближенна, обязательно наступает момент, когда какое-то следствие теории не подтверждается экспериментом или какой-то новый факт не объясняется теорией. Значит, математическая теория оказалась недостаточной. Необходим пересмотр исходных предпосылок теории, изменение положений, которые раньше казались незыблемыми. Такой пересмотр приводит к новой теории, способной шире и глубже проникнуть в структуру изучаемых явлений.
Математизация наших знаний состоит не только и не столько в том, чтобы использовать готовые математические методы и результаты, а в том, чтобы начать поиски того специфического математического аппарата, который позволил бы наиболее полно описывать интересующий нас круг явлений, выводить из этого описания новые следствия, чтобы уверенно использовать особенности этих явлений на практике. Так случилось в период, когда изучение движения стало насущной необходимостью, а Ньютон и Лейбниц завершили создание начал математического анализа. Этот математический аппарат до сих пор является одним из основных орудий прикладной математики. В наши дни разработка теории управления процессами привела к ряду выдающихся математических исследований, в которых заложены основы оптимального управления детерминированными и случайными процессами.
Двадцатый век резко изменил представления о прикладной математике. Если раньше в арсенал средств прикладной математики входили арифметика и элементы геометрии, то восемнадцатый и девятнадцатый века добавили к ним мощные методы математического анализа. В наше время трудно указать хотя бы одну значительную ветвь современной математики, которая в той или иной мере не находила бы применений в великом океане прикладных проблем. По-видимому, разделение математики на прикладную и теоретическую потеряло смысл. Вероятно, не математика, а математики разделяются по своим интересам и творческой направленности на прикладников и теоретиков. Одни считают своей основной задачей преодоление трудностей, связанных с решением задач, которые не поддавались усилиям прежних поколений. Эти задачи интересуют их сами по себе, вне сйязи не только с прикладными вопросами, но и прогрессом математики в целом. Других волнует построение математики в ее основах. Они стремятся так отшлифовать центральные понятия математики, чтобы охватить ими возможно более широкий круг задач. Наконец, есть математики, для которых математика и ее методы существуют не ради самих себя, а в качестве орудия познания законов природы. Конкретная практическая задача для них — лишь источник размышлений; решая ее, они разрабатывают общие приемы, позволяющие освещать широкий круг различных вопросов. Такой подход особенно важен для прогресса науки. От этого выигрывает не только данная область приложений, но и все остальные, а в первую очередь — сама теоретическая математика. Именно такой подход к математике заставляет искать новые методы, новые понятия, способные охватить новый круг проблем, он расширяет область математических исследований. Последние десятилетия дают нам множество примеров подобного рода. Чтобы убедиться в этом, достаточно вспомнить появление в математике таких теперь центральных ее ветвей, как теория случайных процессов, теория информации, теория оптимального управления процессами, теория массового обслуживания, ряд областей, связанных с электронными вычислительными машинами.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
В предлагаемой вниманию читателей книге американского популяризатора О. О. Байндера в общедоступной форме рассказывается о многочисленных космических загадках. Некоторые из них уже «с бородой», другие связаны с открытиями последних лет.
В этой книге затронут широкий круг проблем, связанных с биологией человека, — его место в природе, биологические и социальные особенности, закономерности его индивидуального и исторического развития, взаимоотношения с окружающей средой.Автор касается и многих других сторон человеческого бытия, которые приобрели в наши дни большую социальную и политическую значимость.Книга хорошо иллюстрирована, просто и ясно написана и будет интересна массовому читателю.
В книге известного популяризатора науки А. Азимова рассматривается сложный путь развития биологии с древних времен до наших дней. Автор уделяет внимание всем отраслям биологии, показывая их во взаимодействии со смежными науками.Читатель узнает о вкладе в биологию великих ученых всех времен — Гарвея, Левенгука, Геккеля, Дарвина, Пастера, Ивановского, Мечникова, Павлова и других.Написанная просто и доступно, книга будет интересным и полезным чтением для преподавателей высшей школы, учителей, студентов, школьников и для всех любителей естественных наук.
Книга известных американских ученых, супругов Лоруса Дж. Милна и Маргарет Милн, «Чувства животных и человека» — занимательный, а местами и поэтичный рассказ об ощущениях, свойственных живым существам. О сложных проблемах бионики авторы говорят легко и просто, без излишней наукообразности. Мы узнаем из книги, почему пчелы не видят красного цвета, как птицы ориентируются при перелетах, каким образом летучие мыши чувствуют преграды на своем пути и многое, многое другое. При этом Милны все время сравнивают чувства животных с человеческими чувствами, наводят читателя на мысль о том, что живые организмы с их сложной и малоизученной структурой органов чувств представляют большой интерес не только для биологов, но и для физиков, математиков и особенно конструкторов, создающих самоорганизующиеся устройства.