Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики - [8]
Квантовая механика — это физическая теория, которая рассматривает процессы в микромире. В отличие от релятивистской механики, здесь уравнения Гамильтона перестают работать, поскольку все изменения положений и импульсов в микромире в некотором роде случайны. И все же гамильтониан в этой теории становится еще более важным, поскольку определяет изменение любой квантовой системы во времени. Особое отношение между положением и импульсом является ключевым для такого понятия, как принцип неопределенности, который гласит, что невозможно одновременно точно измерить и импульс, и положение частицы.
Математический аппарат, предложенный Гамильтоном почти 200 лет назад, работает и сегодня. Потенциал уравнений Гамильтона очень высок, и они используются в дисциплинах, мало связанных с физикой. Так, Давид Касс (1937–2008), профессор экономики Пенсильванского университета, использовал эти уравнения для создания модели экономического роста. Он сопоставил значения импульсов, положений и некоторых экономических переменных, таких как экономический поток или цены, чтобы с помощью гамильтониана создать модель валового внутреннего продукта государства. Конечной целью Касса была возможность прогнозировать и даже направлять экономическое развитие. Ученые продолжают адаптировать уравнения Гамильтона для многих других отраслей.
До сих пор мы приводили только примеры применения уравнений Гамильтона к одной частице, но благодаря гибкой формулировке этот инструмент позволяет работать с неограниченным их числом. Анализ систем из нескольких частиц — это первый шаг к пониманию газовой динамики.
Глава 2
Размышляя об N-ном количестве измерений
Наиболее простые проблемы физики связаны с рассмотрением объекта, движущегося под воздействием некой силы. Однако наблюдать такую ситуацию в реальном мире мы не можем: Вселенная — это совокупность огромного количества частиц, которые взаимодействуют друг с другом различным образом, и газ — идеальный пример такого взаимодействия. Вообразить движение всех этих частиц относительно просто, но как выразить это математически? Для ответа на вопрос физикам и математикам пришлось дать новое определение понятию пространство и превратить его в математический объект. Ученые разработали модели различных типов пространств, которые очень отличаются от нашего: в этих моделях кратчайшая линия, соединяющая две точки, не является прямой или в них существует больше направлений, чем вверх и вниз, направо и налево, вперед и назад. Применение таких моделей вышло далеко за границы изучения газов: они подходят как для описания пространства-времени, так и для анализа работы биржи.
Обычно говорят, что пространство, в котором мы живем, имеет три измерения, то есть объекты в нем обладают некоторой глубиной, хотя в математической модели этот тезис формулируется намного точнее.
Понятие измерения связано с понятием координаты. Вспомним, что координаты — это группа чисел, которые позволяют определить положение тела. Долгота и широта, например, показывают нам, как найти объект на поверхности Земли.
С математической точки зрения число измерений — это количество координат, необходимое для определения положения тела.
Самый простой случай — это прямая, которую математики обычно называют числовой прямой, поскольку она образована из действительных чисел, то есть всех целых чисел, таких как 1, 2, 3 или —5; дробей, таких как 3/4, и иррациональных чисел, таких как квадратный корень из двух или число π.
* * *
РАЦИОНАЛЬНЫЕ И ИРРАЦИОНАЛЬНЫЕ ЧИСЛА
В античности считали, что любое число можно выразить в виде частного; то есть что для любого числа а должны быть два таких натуральных числа р и q, что:
a = p/q
Однако пифагореец Гиппас из Метапонта открыл, что это не так. Например, квадратный корень из двух нельзя выразить в виде частного двух натуральных чисел. Пифагорейцы назвали такие числа иррациональными и, как гласит легенда, даже пытались скрыть от мира само их существование, отправив Гиппаса в изгнание.
Сегодня иррациональные числа вполне привычны, узнать их можно по десятичной записи: в ней такие числа имеют бесконечное число знаков после запятой с непериодичной последовательностью.
Рациональные и иррациональные числа называют действительными и связывают их с положением точки в ее измерении.
* * *
Представим, что числовая прямая — это бесконечно длинная проволока, по которой ползет муравей. Если мы возьмем любую точку и обозначим ее как 0, мы сможем определить положение муравья, сказав, за сколько метров от нее он находится. Ноль обычно называют началом координат. Поскольку для определения положения муравья нам необходимо только одно число, говорят, что проволока — это одномерное пространство.
На практике для указания положения нужно больше чисел. Например, чтобы определить на GPS-карте местоположение нашего автомобиля, нужно два числа: горизонтальное и вертикальное положение на экране. Значит, карта — двумерное пространство, поскольку для определения положения частицы на ней необходимы две координаты.
Теперь мы легко понимаем, как определить положение объекта в трехмерном пространстве — для этого нам нужно не меньше чем три числа: одно — для определения высоты тела и два — для определения его положения на плоскости.
Людвиг Больцман - одна из главных фигур в современной физике. Развив активную деятельность в Вене конца XIX века, он произвел революцию в изучении материи, включив в него вероятность, и всеми силами отстаивал существование атомов в то время, когда многие философы и даже влиятельные ученые отрицали его. Несмотря на то что обновленное ученым понятие энтропии и основывающееся на нем начало термодинамики заложили основы квантовой и релятивистской революции в последующем веке, категоричные взгляды Больцмана не всегда встречали поддержку коллег, и это непонимание, возможно, было причиной его трагического самоубийства.
Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.
Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.
Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.
Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.