Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики - [8]
Квантовая механика — это физическая теория, которая рассматривает процессы в микромире. В отличие от релятивистской механики, здесь уравнения Гамильтона перестают работать, поскольку все изменения положений и импульсов в микромире в некотором роде случайны. И все же гамильтониан в этой теории становится еще более важным, поскольку определяет изменение любой квантовой системы во времени. Особое отношение между положением и импульсом является ключевым для такого понятия, как принцип неопределенности, который гласит, что невозможно одновременно точно измерить и импульс, и положение частицы.
Математический аппарат, предложенный Гамильтоном почти 200 лет назад, работает и сегодня. Потенциал уравнений Гамильтона очень высок, и они используются в дисциплинах, мало связанных с физикой. Так, Давид Касс (1937–2008), профессор экономики Пенсильванского университета, использовал эти уравнения для создания модели экономического роста. Он сопоставил значения импульсов, положений и некоторых экономических переменных, таких как экономический поток или цены, чтобы с помощью гамильтониана создать модель валового внутреннего продукта государства. Конечной целью Касса была возможность прогнозировать и даже направлять экономическое развитие. Ученые продолжают адаптировать уравнения Гамильтона для многих других отраслей.
До сих пор мы приводили только примеры применения уравнений Гамильтона к одной частице, но благодаря гибкой формулировке этот инструмент позволяет работать с неограниченным их числом. Анализ систем из нескольких частиц — это первый шаг к пониманию газовой динамики.
Глава 2
Размышляя об N-ном количестве измерений
Наиболее простые проблемы физики связаны с рассмотрением объекта, движущегося под воздействием некой силы. Однако наблюдать такую ситуацию в реальном мире мы не можем: Вселенная — это совокупность огромного количества частиц, которые взаимодействуют друг с другом различным образом, и газ — идеальный пример такого взаимодействия. Вообразить движение всех этих частиц относительно просто, но как выразить это математически? Для ответа на вопрос физикам и математикам пришлось дать новое определение понятию пространство и превратить его в математический объект. Ученые разработали модели различных типов пространств, которые очень отличаются от нашего: в этих моделях кратчайшая линия, соединяющая две точки, не является прямой или в них существует больше направлений, чем вверх и вниз, направо и налево, вперед и назад. Применение таких моделей вышло далеко за границы изучения газов: они подходят как для описания пространства-времени, так и для анализа работы биржи.
Обычно говорят, что пространство, в котором мы живем, имеет три измерения, то есть объекты в нем обладают некоторой глубиной, хотя в математической модели этот тезис формулируется намного точнее.
Понятие измерения связано с понятием координаты. Вспомним, что координаты — это группа чисел, которые позволяют определить положение тела. Долгота и широта, например, показывают нам, как найти объект на поверхности Земли.
С математической точки зрения число измерений — это количество координат, необходимое для определения положения тела.
Самый простой случай — это прямая, которую математики обычно называют числовой прямой, поскольку она образована из действительных чисел, то есть всех целых чисел, таких как 1, 2, 3 или —5; дробей, таких как 3/4, и иррациональных чисел, таких как квадратный корень из двух или число π.
* * *
РАЦИОНАЛЬНЫЕ И ИРРАЦИОНАЛЬНЫЕ ЧИСЛА
В античности считали, что любое число можно выразить в виде частного; то есть что для любого числа а должны быть два таких натуральных числа р и q, что:
a = p/q
Однако пифагореец Гиппас из Метапонта открыл, что это не так. Например, квадратный корень из двух нельзя выразить в виде частного двух натуральных чисел. Пифагорейцы назвали такие числа иррациональными и, как гласит легенда, даже пытались скрыть от мира само их существование, отправив Гиппаса в изгнание.
Сегодня иррациональные числа вполне привычны, узнать их можно по десятичной записи: в ней такие числа имеют бесконечное число знаков после запятой с непериодичной последовательностью.
Рациональные и иррациональные числа называют действительными и связывают их с положением точки в ее измерении.
* * *
Представим, что числовая прямая — это бесконечно длинная проволока, по которой ползет муравей. Если мы возьмем любую точку и обозначим ее как 0, мы сможем определить положение муравья, сказав, за сколько метров от нее он находится. Ноль обычно называют началом координат. Поскольку для определения положения муравья нам необходимо только одно число, говорят, что проволока — это одномерное пространство.
На практике для указания положения нужно больше чисел. Например, чтобы определить на GPS-карте местоположение нашего автомобиля, нужно два числа: горизонтальное и вертикальное положение на экране. Значит, карта — двумерное пространство, поскольку для определения положения частицы на ней необходимы две координаты.
Теперь мы легко понимаем, как определить положение объекта в трехмерном пространстве — для этого нам нужно не меньше чем три числа: одно — для определения высоты тела и два — для определения его положения на плоскости.
Людвиг Больцман - одна из главных фигур в современной физике. Развив активную деятельность в Вене конца XIX века, он произвел революцию в изучении материи, включив в него вероятность, и всеми силами отстаивал существование атомов в то время, когда многие философы и даже влиятельные ученые отрицали его. Несмотря на то что обновленное ученым понятие энтропии и основывающееся на нем начало термодинамики заложили основы квантовой и релятивистской революции в последующем веке, категоричные взгляды Больцмана не всегда встречали поддержку коллег, и это непонимание, возможно, было причиной его трагического самоубийства.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.