Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики - [10]

Шрифт
Интервал

l = √(a>2)

Рассмотрев эти три выражения, можно сделать вывод, что для получения длины в еще одном измерении нужно прибавить квадрат следующей координаты. Таким образом, в n-мерном пространстве складываются квадраты n координат и извлекается корень суммы. Выражаясь математически, если обозначить n-ную координату через х, то:


Это выражение легко распространяется на любое число измерений. Таким образом, мы получили формулу для расчета длины стрелки в пространстве с любым количеством измерений. И это потрясающее математическое достижение.


Объемы, гиперобъемы, площади и гиперплощади

Понятие объема можно определить как количество пространства, которое занимает объект. Можно ли говорить об объемах в других измерениях? Например, подошло бы наше понятие объема обитателям Вселенной из пяти измерений?

Прежде чем анализировать пространства с размерностью больше трех, рассмотрим меньшее количество измерений.

В нашей повседневной действительности объем измеряется в кубических метрах (м>3), кубических сантиметрах (см>3) или в целом в любой единице измерения расстояния, возведенной в куб. Любопытно, что показатель степени единицы измерения объема совпадает с числом измерений пространства, в котором мы живем.

Теперь возьмем другую знакомую величину — площадь. Она измеряется в единицах измерения длины в квадрате, обычно в квадратных метрах, или м>2. Площадь используется для измерения количества пространства, которое занимает плоская, то есть двумерная фигура. Итак, мы можем трактовать площадь как вид объема для двумерных объектов. Точно так же длина соответствует объему одномерных объектов.

Теперь вообразим, что в нашем мире только два измерения. То есть мы существа, ограниченные площадью, как муравьи. В этом мире мы не знали бы понятия объема, а только понятие плоскости. Для нас двумерным эквивалентом объема была бы площадь.

* * *

ФЛАТЛАНДИЯ

«Флатландия» (в переводе с английского "Flatland") — это название романа английского автора Эдвина Эбботта (1838–1926), в котором для сатирического описания викторианского общества используется понятие пространств из нескольких измерений. Во «Флатландии» рассказывается история о Квадрате, который живет в двумерном мире, где социальный статус каждого многоугольника определяется числом его сторон. Однажды квадрату наносит визит Сфера, которая живет в Трехмерии — трехмерной стране, и рассказывает ему о своей родине. Однако Квадрат отказывается верить в существование третьего измерения, пока не посещает страну своей новой знакомой.

Увидев третье измерение, главный герой предполагает существование еще большего количества измерений, например четвертого, пятого и шестого, но Сфера не верит ему и возвращает его обратно, во Флатландию, где Квадрат проводит остаток дней в тюрьме, пытаясь убедить соотечественников в том, что в мире больше двух измерений. Этот сюжет очень похож на сюжет мифа о пещере Платона, который, как говорят, поместил на дверях своей Академии изречение: «Не знающий геометрии да не войдет сюда».

В момент публикации «Флатландия» была принята довольно тепло, а после открытия Альбертом Эйнштейном общей теории относительности Эбботта стали считать фантастом за предвидение новых измерений.



Обложка первого издания «Флатландии».

* * *

Мы можем видеть, что объем указывает нам размер областей с тем же количеством измерений, что и наше пространство. Например, у куба три измерения, следовательно, у него есть объем. У квадрата, наоборот, объема нет, поскольку он не имеет толщины. Но у квадрата есть определенная площадь, которая описывает размер объекта с меньшей размерностью, чем наше пространство, в этом случае два.

Рассуждая подобным образом, мы можем расширить понятия объема и площади на пространства с количеством измерений больше трех. Назовем эти новые объем и площадь гиперобъемом и гиперплощадью.

В четырехмерном пространстве, скажем, гиперобъем выражается в единицах измерения длины в четвертой степени, например в м>4. Гиперплощадь имеет на одно измерение меньше и выражается в единицах измерения длины в кубе — м>3; то есть гиперплощадь в четырехмерном пространстве — это как объем в трехмерном. Кажется, что это сложно, но пользуясь математическими инструментами, разработанными для изучения п-мерных пространств, можно не только представить эти гиперобъемы и гиперплощади, но даже определить геометрические тела, подобные привычным нам трехмерным.

Простой пример — сфера. Трехмерная сфера определяется как геометрическая фигура, все точки которой находятся на одном и том же расстоянии от центра; двумерная сфера, круг, определяется точно так же. Подобным же образом мы можем определить четырехмерную гиперсферу как фигуру, у которой все точки равноудалены от центра. Как видите, это определение справедливо для любого количества измерений. То есть n-мерная сфера — это геометрическое тело, все точки которого равноудалены от центра. Объем такой сферы выражается в единицах измерения длины в степени N, где N — число измерений рассматриваемого пространства.


Четырехмерный куб

Особый интерес вызывает такое четырехмерное тело, как гиперкуб. Поскольку это идеальный многогранник, вычислить его гиперобъем и даже представить его проекцию в трехмерном пространстве довольно просто.


Еще от автора Эдуардо Арройо
Вселенная погибнет от холода. Больцман. Термодинамика и энтропия

Людвиг Больцман - одна из главных фигур в современной физике. Развив активную деятельность в Вене конца XIX века, он произвел революцию в изучении материи, включив в него вероятность, и всеми силами отстаивал существование атомов в то время, когда многие философы и даже влиятельные ученые отрицали его. Несмотря на то что обновленное ученым понятие энтропии и основывающееся на нем начало термодинамики заложили основы квантовой и релятивистской революции в последующем веке, категоричные взгляды Больцмана не всегда встречали поддержку коллег, и это непонимание, возможно, было причиной его трагического самоубийства.


Рекомендуем почитать
25 техник эффективного обучения для интересного изучения математики с ребенком

Как помочь ребенку полюбить математику? Эта книга поможет вам и вашим детям взглянуть по-новому на изучение математики, закрыть пробелы в знаниях и превратить учёбу в удовольствие.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Наша математическая вселенная. В поисках фундаментальной природы реальности

Галилео Галилей заметил, что Вселенная – это книга, написанная на языке математики. Макс Тегмарк полагает, что наш физический мир в некотором смысле и есть математика. Известный космолог, профессор Массачусетского технологического института приглашает читателей присоединиться к поискам фундаментальной природы реальности и ведет за собой через бесконечное пространство и время – от микрокосма субатомных частиц к макрокосму Вселенной.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.


Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.


Как три вектора один детерминант в нуль обратили

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.