Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики - [5]
Этот математический объект оказался ключевым элементом, которого не хватало для дополнения принципа наименьшего действия, потому что его можно было использовать, имея в виду как кинетическую, так и потенциальную энергию. В новой формулировке утверждалось, что любое тело движется таким образом, что лагранжиан уменьшается как можно быстрее. За этой внешней простотой кроется удивительная способность прогнозировать движение любой классической системы, то есть любой системы, для описания которой нет необходимости прибегать к законам квантовой механики.
Кроме того, формула Лагранжа имеет еще два преимущества: во-первых, она подходит для любой системы координат, и это решило проблему уравнений Ньютона, применимых только для прямоугольной системы координат; во-вторых, эту формулу совершенно свободно можно применить к произвольному числу частиц.
Новая математика открыла для физиков новые возможности, поскольку теперь ученые уже не были ограничены изучением только простых систем, но могли обратить внимание на до сих пор не решенные задачи. Хотя формулировка Лагранжа соответствует законам Ньютона, на практике она позволяет максимально расширить действие этих законов. Изучение таких сложных систем, как газ, было бы невозможным без лагранжевой механики.
И все же, несмотря на всю свою важность, лагранжиан — это только инструмент, позволяющий узнать положение и скорость частицы. Следуя принципу наименьшего действия, траектория тела должна быть такой, чтобы лагранжиан уменьшался как можно быстрее. Но как найти эту траекторию? Одним из способов могло бы стать сравнение нескольких траекторий и выбор той, при которой лагранжиан уменьшается быстрее. К сожалению, количество существующих возможностей очень велико, и до изобретения компьютера не стоило и думать об этом методе. Для решения задачи Лагранжу пришлось воспользоваться вариационным исчислением — совершенно новым математическим инструментом.
Совместная работа Лагранжа и Эйлера привела ученых к открытию уравнений, известных сегодня как уравнения Эйлера — Лагранжа. Они сводят проблему нахождения наименьшего действия к решению системы дифференциальных уравнений, в которых неизвестное — это функция. Решение таких уравнений в XVIII веке было хорошо развито.
Можно представить метод Лагранжа следующим образом: берется некая траектория и слегка изменяется; затем исследуются похожие траектории и вычисляется, как уменьшается лагранжиан для всех них до тех пор, пока не находится подходящая траектория. На следующем графике можно наблюдать различные траектории частицы.
* * *
МАТЕМАТИЧЕСКАЯ ФОРМУЛИРОВКА ПРИНЦИПА НАИМЕНЬШЕГО ДЕЙСТВИЯ
Принцип наименьшего действия гласит, что тела движутся таким образом, что лагранжиан уменьшается как можно быстрее. Однако существует и более точная формулировка, основанная на такой величине, как действие.
Предположим, что мы знаем, как развивается лагранжиан частицы во времени. Сначала представим это развитие графически.
Действие определяется как область под кривой лагранжиана между исходным моментом (t) и конечным моментом (t>1) движения за определенное время. То есть действие — это закрашенная на рисунке область.
Принцип наименьшего действия можно изложить следующим образом: тело движется так, что действие, связанное с его движением, минимально.
Вычисление площади под кривой может потребовать использования анализа бесконечно малых — области математики, разработанной независимо друг от друга Ньютоном и Лейбницем именно для решения физических задач.
* * *
Лагранж действительно воспользовался этой идеей для того, чтобы найти общую форму, которая позволила бы ему определить траекторию, не останавливаясь на вычислении уменьшения лагранжиана.
Теоретически уравнения Эйлера — Лагранжа могли бы использоваться для определения траектории каждой частицы газа, поскольку, как уже было сказано, их легко можно расширить на произвольное число частиц. Однако на практике из-за огромного количества частиц решить эти уравнения невозможно без помощи мощного компьютера.
Одно из основных преимуществ лагранжевой механики состоит в том, что она была определена в терминах обобщенных координат. В отличие от законов Ньютона, она не предполагала использование прямоугольной системы координат, а была справедлива для любых других систем, подходящих для изучения проблемы. Обобщенные координаты необязательно должны быть выражены единицами измерения длины; как мы видели раньше, одна из них может быть углом. Главное требование к таким координатам — они должны быть достаточными для того, чтобы определить положение частицы в некоторой области пространства.
Чтобы отличить обобщенные координаты от прямоугольной системы координат, оси которых названы х, у, z, используется буква q с индексами — q>1, q>2 или q>3. Это очень удобно, когда рассматриваются системы с несколькими частицами, как в случае с газом.
В предыдущем примере с полярными координатами, где положение на плоскости задано расстоянием до центра и углом, можно определить:
q>1= r
q>2= Θ
Другой пример — сферические координаты.
В этом случае для определения положения в пространстве нужны три числа: расстояние до центра и два угла, как показано на рисунке. В этом случае получаются следующие обобщенные координаты:
Людвиг Больцман - одна из главных фигур в современной физике. Развив активную деятельность в Вене конца XIX века, он произвел революцию в изучении материи, включив в него вероятность, и всеми силами отстаивал существование атомов в то время, когда многие философы и даже влиятельные ученые отрицали его. Несмотря на то что обновленное ученым понятие энтропии и основывающееся на нем начало термодинамики заложили основы квантовой и релятивистской революции в последующем веке, категоричные взгляды Больцмана не всегда встречали поддержку коллег, и это непонимание, возможно, было причиной его трагического самоубийства.
Перед читателями проходит история возникновения и развития основных идей геометрии, которые и сегодня приводят к новым взглядам и открытиям в кристаллографии, химии, геологии, генетике, микробиологии, архитектуре, строительстве, технике. Плоское и объемное, свойства кристаллов и правильных тел, симметрия, замкнутость и бесконечность Вселенной — эти темы-мелодии сливаются в книге в некий гимн во славу Геометрии. Для иллюстрирования книги использованы гравюры голландского графика М. К. Эсхера, геометрические по своему содержанию. Научно-художественная книга для широкого круга читателей.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.
Уже несколько десятилетий тема искусственного интеллекта занимает умы математиков и людей, далеких от науки. Ждать ли нам в ближайшем будущем появления говорящих машин и автономных разумных систем, или робот еще не скоро сравнится с человеком? Что такое искусственный интеллект и возможно ли в лабораторных условиях создать живой разумный организм? Ответы на эти и многие другие вопросы читатель узнает из данной книги. Добро пожаловать в удивительный мир искусственного интеллекта, где математика, вычисления и философия идут рука об руку.
Сборник математических задач и увлекательных головоломок, принадлежащий перу одного из классиков этого жанра Сэма Лойда, несомненно доставит большое удовольствие всем любителям занимательной математики.
Рэймонд Смаллиан счастливо сочетает в одном лице философа, логика, математика, музыканта, фокусника, юмориста, писателя и составителя великолепных задач-головоломок. Искусный писатель и великолепный юморист, Смаллиан любит облекать свои задачи в литературную форму, нередко пародирующую какие-нибудь известные произведения. Делает он это настолько хорошо, что его книги, изобилующие всякого рода парадоксами, курьезами и задачами, с удовольствием читают и те, кто даже не пытается решать задачи.В книге, которую вы держите сейчас в руках, кэрролловская Алиса из Страны Чудес и ее друзья раскрывают перед читателем нескончаемую вереницу задач-головоломок.
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.Рассчитана на достаточно широкий круг читателей с общенаучными интересами.