Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики - [4]
Сравним работу, которую выполняют два человека, задача которых — отнести коробки на склад. Очевидно, что чем больше вес коробки, тем больше работы совершил человек; то есть работа пропорциональна приложенной силе. Кроме того, чем больше расстояние, на которое переносится коробка, тем больше работа. Таким образом, работа пропорциональна расстоянию. На основании этих идей мы можем определить физическую работу как произведение силы на расстояние:
W = Fd,
где W — «работа» (от английского work), F — сила и d — расстояние.
Энергию можно определить как работу, проделанную телом при отсутствии трения. Например, вся работа, необходимая для перемещения коробки по ледовому катку (если предположить, что трение отсутствует), превращается в кинетическую энергию. Работа, необходимая для того, чтобы поднять коробку на крышу небоскреба, равна ее потенциальной энергии. Значит, энергия — это способность тела осуществлять работу. Эта простая формулировка дает нам инструмент для определения потенциальной энергии тела в любой ситуации: потенциальная энергия — это работа, необходимая для перемещения из одной точки в другую. Именно так математически выглядит выражение для расчета электрической и гравитационной потенциальной энергии.
* * *
Кажется, что любое тело движется так, будто хочет уменьшить свою потенциальную энергию. Например, камни всегда падают, а не движутся вверх. Более того: камень движется в область меньшей энергии по определенному пути, который позволяет ему потерять потенциальную энергию максимально быстро. Как показано на рисунке, камень будет следовать по прямой линии вниз: это самый короткий путь к нижней точке, в которой у него минимальная потенциальная энергия.
Различные пути, по которым камень мог бы достигнуть земли. Все они длиннее, чем его настоящий путь — самый короткий.
Великий математик Леонард Эйлер (1707–1783) использовал этот факт для формулировки новой версии принципа наименьшего действия; он предложил считать, что тела стремятся потерять потенциальную энергию с максимально возможной скоростью. Принцип Эйлера привел к современной идее о том, что система частиц всегда стремится к состоянию с наименьшей потенциальной энергией. Этот простой тезис способен объяснить магнетизм железа, структуру молекулы воды, а также помочь в изучении поведения газа при низких температурах.
Однако принцип Эйлера в своем первоначальном виде работал не везде. Если подбросить камень, он сначала получит потенциальную энергию, а лишь затем начнет ее терять. Кажется, что при определении траектории частицы на нее воздействует не только потенциальная энергия, но и кинетическая.
Окончательная формулировка принципа наименьшего действия принадлежит Лагранжу и Гамильтону. С одной стороны, эти ученые переформулировали принцип Эйлера таким образом, чтобы он работал во всех случаях. С другой стороны, Лагранж и Гамильтон разработали новые математические методы для решения уравнений, которые следуют из этого принципа.
Ими было введено математическое понятие, названное лагранжианом, которому, по иронии судьбы, определение дал Гамильтон. Лагранжиан — это просто разница между кинетической и потенциальной энергией. Если мы обозначим лагранжиан через L, кинетическую энергию — через Т, а потенциальную — через V, то лагранжиан можно вычислить следующим образом:
L = T — V.
Значение лагранжиана различно для каждого промежутка времени движения частицы. В случае с камнем, брошенным вверх, его кинетическая энергия сначала уменьшается, пока не достигнет верхней точки, где становится нулевой, а затем снова увеличивается по мере того, как камень падает. Потенциальная энергия, в свою очередь, увеличивается, пока камень поднимается, а во время падения уменьшается.
* * *
ЖОЗЕФ ЛУИ ЛАГРАНЖ (1736–1813)
Он был одним из самых значительных математиков XVIII века. Среди заслуг Лагранжа — разработка вариационного исчисления, математического инструмента, позволяющего найти функцию, на которой заданный функционал достигает максимального или минимального значения. Методы Лагранжа до сих пор широко используются в физике, математике и даже в экономике, где найти максимальные значения некоторых величин, таких как выгода, очень важно. Помимо вклада в базовую науку, Лагранж стал одним из инициаторов внедрения метрической системы. Считается, что именно ему принадлежит идея выбрать килограмм и метр в качестве международных единиц.
Несмотря на закрытый характер, Лагранж пользовался большим признанием: он провел два десятилетия в Берлине, где Фридрих II Великий (1712–1786) регулярно обращался к нему за советами. После смерти монарха математик переехал в Париж, и его авторитет сохранился даже в период революции, в то время как другим ученым, таким как Антуан Лавуазье (1743–1794), повезло гораздо меньше. За два дня до смерти Лагранжа Наполеон наградил его Великим крестом имперского ордена Собрания. Похоронен ученый в Пантеоне, его могила открыта для посещений.
* * *
Лагранжиан можно вычислить в каждый промежуток времени, вычтя потенциальную энергию из кинетической. Все три случая показаны на графиках.
Людвиг Больцман - одна из главных фигур в современной физике. Развив активную деятельность в Вене конца XIX века, он произвел революцию в изучении материи, включив в него вероятность, и всеми силами отстаивал существование атомов в то время, когда многие философы и даже влиятельные ученые отрицали его. Несмотря на то что обновленное ученым понятие энтропии и основывающееся на нем начало термодинамики заложили основы квантовой и релятивистской революции в последующем веке, категоричные взгляды Больцмана не всегда встречали поддержку коллег, и это непонимание, возможно, было причиной его трагического самоубийства.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.