Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики - [3]

Шрифт
Интервал



Координата постоянна, так как расстояние до центра никогда не меняется; координата Θ увеличивается с течением времени, по мере вращения частицы. Как видите, смена системы координат значительно облегчает нашу задачу.

Физики вскоре поняли, что для решения сложных задач законам Ньютона недостает гибкости. Нужно было найти новую формулировку этих законов, которая подходила бы для любой системы координат и для любого числа частиц. Жозефу Луи Лагранжу и Уильяму Роуэну Гамильтону удалось переформулировать законы классической механики и привести их к современному виду. Результаты их работы используются для описания самых современных теорий в физике частиц, начиная с квантовой механики и кончая теорией струн.


Принцип наименьшего действия

Гамильтон потратил на переформулирование законов Ньютона довольно много времени. Важным шагом при этом было использование понятия энергии, не включенного в уравнения Ньютона.

Первым предложил нечто похожее на идею энергии Готфрид Лейбниц (1646–1716), который оспаривал с Ньютоном первенство изобретения анализа бесконечно малых — математического инструмента, позволявшего работать с бесконечно малыми числами. Лейбниц обнаружил, что при описании некоторых типов движения используется математическая величина, которая остается постоянной, vis viva, или живая сила. Ученый открыл, что эта сила пропорциональна массе и квадрату скорости. Лейбниц доказал, что для некоторого типа столкновений частиц общая живая сила остается постоянной.

С течением времени понятие живой силы трансформировалось в понятие энергии. Сегодня при описании движения тела говорят о его кинетической энергии. Выражение кинетической энергии практически идентично выражению живой силы: ее значение равно половине последней. Если мы обозначим через Т кинетическую энергию, через m — массу и через v — скорость, кинетическая энергия частицы равна:

T = m·v>2/2

Кинетическая энергия остается постоянной при столкновениях тел, например бильярдных шаров. Однако на практике часть этой энергии всегда теряется, преобразуясь в молекулярные движения, невидимые глазу. При этом столкновения атомов, или элементарных частиц, абсолютно эластичны: вся кинетическая энергия при столкновениях сохраняется. Поэтому можно говорить о внутренней энергии газа как о сумме энергий всех частиц: хотя атомы постоянно сталкиваются, их общая энергия остается неизменной.

Идея кинетической энергии, или живой силы, привела к формулировке принципа наименьшего действия, предложенной Пьером Луи Моро де Мопертюи (1698–1759), который утверждал, что все изменения в природе совершаются наименьшим возможным количеством действия. Мопертюи при этом искал вдохновение в области оптики: еще в Древней Греции заметили, что луч света идет по кратчайшему пути между двумя точками. Ученый говорил: «Природа в своих действиях всегда пользуется наиболее простыми средствами».

Однако вскоре было установлено, что для описания движения частицы недостаточно кинетической энергии. Если подбросить тело в воздух, его начальная кинетическая энергия будет высока, но вскоре тело останавливается и начинает падать вниз. Куда девается его кинетическая энергия? Очевидно, что она никуда не исчезает, поскольку, падая, тело ускоряется, возвращая исходную кинетическую энергию. Должно быть, эта энергия хранится в теле в каком-то виде, из которого может снова возникнуть.

Решение задачи было связано с открытием понятия потенциальной энергии, то есть потенциала тела для получения кинетической энергии. Например, камень, расположенный на крыше небоскреба, обладает большим количеством потенциальной энергии: если его уронить, его кинетическая энергия в момент достижения земли будет огромной. Итак, потенциальная энергия камня определяется как кинетическая энергия, которой он обладал бы, если бы его уронили с высоты небоскреба. Обычно потенциальная энергия обозначается буквой V.

Тело на высоте небоскреба имеет гравитационную потенциальную энергию, поскольку именно гравитация обеспечивает ускорение тела при падении. Однако существует большое количество потенциальных энергий, каждая из них — со своим математическим выражением. Например, потенциальная энергия пружины проявляется после того, как сжатая пружина освобождается. Имеют потенциальную энергию и электрические заряды: два положительных заряда на близком расстоянии отталкиваются, высвобождая кинетическую энергию. Все виды потенциальной энергии трансформируются в кинетическую.

Потенциальная энергия особенно важна, когда речь идет о газах. При низкой плотности и высокой температуре газа его молекулы находятся на очень большом расстоянии друг от друга и движутся очень быстро, поэтому потенциальная энергия каждой из них, показывающая степень взаимодействия молекул, очень мала.

Однако если газ остынет, взаимодействие между молекулами станет значительным, то есть потенциальная энергия каждой молекулы возрастает и сравнится с кинетической. Чтобы реализовать это понимание, для изучения газовой динамики потребовались новые математические инструменты.

* * *

ЭНЕРГИЯ И РАБОТА

Современное понятие энергии определяется в зависимости от другой физической величины — работы. Физическая «работа» отличается от повседневной «работы», но оба понятия связаны между собой. Предположим, мы хотим измерить, сколько работы совершает человек за минуту. Поскольку мы говорим о физике, ограничимся физической работой, например передвижением объекта из одной точки в другую.


Еще от автора Эдуардо Арройо
Вселенная погибнет от холода. Больцман. Термодинамика и энтропия

Людвиг Больцман - одна из главных фигур в современной физике. Развив активную деятельность в Вене конца XIX века, он произвел революцию в изучении материи, включив в него вероятность, и всеми силами отстаивал существование атомов в то время, когда многие философы и даже влиятельные ученые отрицали его. Несмотря на то что обновленное ученым понятие энтропии и основывающееся на нем начало термодинамики заложили основы квантовой и релятивистской революции в последующем веке, категоричные взгляды Больцмана не всегда встречали поддержку коллег, и это непонимание, возможно, было причиной его трагического самоубийства.


Рекомендуем почитать
Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.