Том 35. Пока алгебра не разлучит нас. Теория групп и ее применение - [43]

Шрифт
Интервал

= а>rvi = е. Это означает, что n является делителем mui и rvi, следовательно, n также будет делителем суммы этих чисел. Но по соотношению Безу имеем mui + rvi = (mu + rv)i = i. Следовательно, n является делителем i, что равносильно а>i = е, следовательно, отображение φ является инъективным. Лемма доказана.

Обратите внимание, что верно и обратное: если r и m — взаимно простые числа, то прямое произведение двух циклических групп порядка r и m изоморфно циклической группе порядка гш, так как лемма устанавливает изоморфизм между ℤ/r х ℤ/m и ℤ/rm. Теперь посмотрим, как можно использовать эту лемму для выбора порождающих элементов G таким образом, чтобы порядок одного из них был делителем порядка другого. Выберем два порождающих элемента а и b произвольным образом.

Напомним: так как G коммутативная группа, все ее элементы можно представить в виде a>ib>i, где i и j — целые числа, которые удовлетворяют условию 0 < i < порядок (а) и 0< j < порядок (b) (см. стр. 72).

Это же условие можно выразить другим, более сложным способом: функция <а> × → G, которая ставит в соответствие пару (а>i, b>i) элементу a>ib>i группы G, является сюръективной. Разумеется, основная сложность заключается в том, что нет никакой причины, по которой эта функция также должна быть инъективной.

Следовательно, запись а>ib>i может быть не единственной, и если мы рассмотрим все члены а>ib>i, то некоторые элементы G будут учтены более одного раза. Об этой проблеме мы поговорим чуть позже.

Рассмотрим порядок а и b. По основной теореме арифметики (стр. 89) оба этих числа можно разложить на простые множители. Разделим эти множители на две группы в зависимости от того, являются ли они одновременно делителями порядков а и b или нет. Чтобы читатель смог лучше понять рассуждения, ограничимся тем, что рассмотрим следующую ситуацию: существует единственное простое число р, которое одновременно является делителем порядков а и b (в общем случае рассуждения будут аналогичными, но все обозначения будут содержать верхние индексы, что затруднит чтение).

Выберем наибольшие степени р и запишем порядок (а) = р>em, порядок (b) = р>fn, где e и f — два положительных целых числа. Также предположим, что е < f. Обратите внимание, что m и n взаимно простые: если бы они имели общий простой делитель, он также был бы делителем порядков а и b, следовательно, был бы равен р. Это же верно для р>e и m, а также для р>f и n.

Применив лемму к циклическим группам, порожденным а и b, получим изоморфизмы >m> × >p>r> и >n> × >p>t>. Следовательно:

× >m> × >p>e> × >n> × >p>f>. (*)

131

Рассмотрим три последних множителя, которые имеют порядок m, p>f и n соответственно. Так как m и p>f взаимно простые, из леммы следует, что прямое произведение >p>r> × >n> изоморфно циклической группе порядка p>fm. Так как n и p>fm также взаимно простые, мы можем вновь применить эту лемму и показать, что произведение трех множителей изоморфно циклической группе <х> порядка p>fmn.

Примем у = а>m. Порядок этого элемента равен р>e. Из формулы (*) следует, что прямые произведения <а> и <х> <у> изоморфны, следовательно, существует сюръективное отображение <х> <у> на G. Иными словами, х и у порождают G.

Теперь нетрудно показать, что порядок (х) = p>fmn делится на порядок (у) = р>e, так как мы предположили, что е < f. Мы доказали следующую лемму[2]:

Лемма 2. Пусть G — конечная абелева группа, порожденная двумя элементами.

Можно выбрать ее порождающие элементы так, что порядок одного будет делителем порядка другого.

Продолжим доказательство.

Порядок группы

Согласно предыдущей лемме мы можем выбрать порождающие элементы х и у группы G так, что порядок (у) = l и порядок (х) будет кратным l и равным, к примеру, lk. Все элементы G можно будет записать в виде 0 ≤ i < lk у 0 ≤ у< l, где 0 < i < lk и 0 < j< l.

Если бы две степени порождающих элементов совпадали, эта запись была бы не единственной. К примеру, если бы у>3 равнялось х>2, то х>2у>4 и х>4у были бы двумя разными способами записи одного и того же элемента. Обозначим через t наименьшее целое положительное число такое, что у>t совпадает с x>s для некоторого целого s. Мы знаем, что t < I, так как у>l = е = х>lk.

132

В этой новой нотации каждый элемент G можно записать единственным образом в виде x>iy>j, где 0 < i < lk и 0 < j < t. В самом деле, если бы равенство x>iy>j = x>iy>j выполнялось для какого-либо 0< j' ≤ j < t, то мы получили бы х>i'-i = у>j-j', или, что аналогично, у>j-j' было бы степенью х. Так как j’ — j строго меньше t, эта величина может равняться только нулю, следовательно, j = j' и i' = i, так как х>i'-i = е при —lk < i' —i < lk.

Это доказывает, что порядок G равен произведению двух верхних границ показателей степени i и j, то есть lkt.

Целое число v

Обозначим через r порядок элемента у>t. Так, е = (у>t)>r = у>tr. Так как у — элемент порядка l, мы знаем, что l ≤ tr. Мы хотим доказать, что l = tr, следовательно, надо исключить случай l < tr. Будем рассуждать следующим образом: если t < tr, то существует целое число u < r такое, что l заключено между tu и t(u + 1), то есть выполняется равенство tu < l < t(u + 1). Обратим внимание на величину t(u + 1) — l.


Еще от автора Хавьер Фресан
Том 22. Сон  разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления.


Рекомендуем почитать
Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.