Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление - [9]

Шрифт
Интервал



Слева — король Швеции и Норвегии Оскар II, справа — Магнус Геста Миттаг-Леффлер. Король-пифагореец и математик-платоник.


И победителем становится…

На конкурс короля Оскара II двенадцать математиков представили двенадцать работ. Всего в пяти из них рассматривалась задача трех тел, но ни в одной не приводилось требуемого решения в виде степенного ряда. В итоге 20 января 1889 года, за день до шестидесятилетнего юбилея монарха, уважаемое жюри, получив одобрение короля, объявило победителем Анри Пуанкаре за статью «О задаче трех тел и уравнениях движения»: «Эта статья не может считаться полным решением предложенной задачи, однако она столь важна, что ее публикация откроет новую эру в истории небесной механики».

Французская пресса сочла Пуанкаре едва ли не героем, его победа расценивалась как триумф французской математики над немецкой, которой традиционно отдавалось первенство.

Однако вскоре стало понятно: что-то пошло не так. Когда Миттаг-Леффлер опубликовал статью Пуанкаре, астроном Йохан Аугуст Гуго Полден, подобно Немезиде, вместе с Леопольдом Кронекером незамедлительно провозгласил, что эта работа ничем принципиально не отличается от более ранней его работы, опубликованной в 1887 году.

Ситуация обострилась еще больше, когда несколько месяцев спустя, в июле 1889-го, на Пуанкаре с градом вопросов обрушился Эдвард Фрагмен, редактор журнала Acta Mathematica, который хотел прояснить непонятные моменты объемной статьи перед публикацией. Эрмит неспроста писал: «В этой работе, как и почти во всех остальных, Пуанкаре только показывает путь, однако требуется приложить немало усилий, чтобы устранить лакуны и закончить его работу».

Кроме того, в конце ноября сам автор обнаружил в статье грубую ошибку, о чем сообщил Миттаг-Леффлеру в письме, датированном 1 декабря:

«Сегодня утром я написал Фрагмену, чтобы сообщить о допущенной мной ошибке, но я сомневаюсь, что он даст тебе прочесть мое письмо. Однако последствия этой ошибки намного серьезнее, чем я изначально предполагал. Двоякоасимптотические решения [сепаратрисы, проходящие через седло] не являются замкнутыми кривыми… следовательно, не являются периодическими решениями. Верно лишь то, что две составляющие этой кривой [две сепаратрисы] пересекаются бесконечное число раз. Не буду говорить, какое беспокойство причинило мне это неприятное открытие. В статью необходимо внести много изменений».

Это письмо, несомненно, поразило редактора журнала и организатора конкурса: признание Пуанкаре серьезно подорвало авторитет жюри и организаторов. Миттаг-Леффлер оказался в крайне затруднительном положении. Он попытался изъять из обращения уже напечатанные копии статьи и не придавать огласке ошибку Пуанкаре, чтобы не повредить репутации ученого. Весь тираж очередного номера престижного журнала Acta Mathematica пришлось уничтожить — сохранился единственный экземпляр номера, который сейчас хранится в сейфе в Институте Миттаг-Леффлера. Между тем всего за два месяца, то есть за декабрь 1889-го и январь 1890 года, Пуанкаре полностью исправил все ошибки в своей работе, отправил ее в печать и оплатил публикацию из своего кармана, так как еще до участия в конкурсе согласился покрыть все накладные расходы. Пуанкаре заплатил более 3500 шведских крон при том, что в качестве премии он получил всего 2500 крон.

Прекрасный пример интеллектуальной честности.


Математический монстр Пуанкаре

В чем же заключалась ошибка Пуанкаре? Французский математик заявил, что нашел бесконечное множество периодических решений задачи трех тел, но потом обнаружил, что некоторые эти решения не были периодическими, так как не описывали замкнутые кривые. Именно благодаря этой грубой ошибке Пуанкаре смог обнаружить, что двоякоасимптотические решения, сепаратрисы, проходящие через седловые точки (эти точки Пуанкаре называл гомоклиническими), определяли хаотические орбиты.

Рассмотрим эту ситуацию подробнее. Пуанкаре и Бендиксон смогли доказать свою теорему на плоскости, в двух измерениях. Так как траектории на фазовой плоскости не могут пересекаться, число корректных траекторий невелико. Как мы уже показали, существует всего пять основных видов траекторий: они могут приближаться к особой точке, удаляться от нее (для фокусов, узлов и седел) либо периодически вращаться вокруг центра или вблизи предельного цикла.

В задаче трех тел, движущихся под действием сил взаимного притяжения, рассматривается трехмерное пространство, которое допускает куда больше сочетаний и возможных случаев. В фазовом пространстве все обстоит намного сложнее: траектории необязательно должны пересекаться — достаточно, чтобы они переплетались между собой. На плоскости, в отличие от трехмерного пространства, траектории не могут сплетаться. Кроме того, если число измерений пространства больше двух, система может иметь аттракторы, которые будут весьма заметно отличаться от особых точек (фокусов) и предельных циклов. Как вы узнаете из следующей главы, в многомерных пространствах возникают так называемые странные аттракторы, которые, как правило, сопутствуют хаосу.



В трехмерном пространстве траектории-решения могут переплетаться между собой.


Рекомендуем почитать
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.


Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Том 13. Абсолютная точность и другие иллюзии. Секреты статистики

Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.