Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление - [7]

Шрифт
Интервал

Когда новость о проведении конкурса была опубликована в журнале Acta Mathematica, 31-летний Пуанкаре уже был известен в мире математики, однако он не сразу согласился принять участие в конкурсе. Митгаг-Леффлеру пришлось отправить ему письмо, призывая подать на конкурс какую-либо работу. Пуанкаре ответил, что планирует рассмотреть задачу трех тел не затем, чтобы решить ее (это представлялось ему практически невозможным), а главным образом для того, чтобы получить новые важные результаты, достойные быть представленными жюри конкурса.

В конце концов воодушевленный Пуанкаре начал развивать свои идеи, касавшиеся качественной теории дифференциальных уравнений. Эту теорию Пуанкаре разработал в 1881–1885 годах и изложил в четырех статьях, важнейшая из которых носила название «О кривых, определяемых дифференциальными уравнениями». В этих работах были рассмотрены линейные и нелинейные дифференциальные уравнения не столько с количественной, сколько с качественной точки зрения (иными словами, он стремился найти не решения в явном виде, а описать их общую динамику и устойчивость), для чего обратился к недавно созданной дисциплине — топологии, которая в то время называлась анализом размещения (лат. analysis situs).

В отличие от Лагранжа, который хвастался тем, что его «Аналитическая механика» не содержала ни одной иллюстрации, Пуанкаре смело использовал геометрические методы.

Понимая невозможность решить большинство дифференциальных уравнений (для нелинейных уравнений метод возмущений не работал), Пуанкаре рассмотрел их геометрически. Начал он с того, что рассмотрел дифференциальное уравнение


где производная у по х равна отношению двух произвольных функций Р и Q. Ученый подробно изучил так называемые особые точки, то есть точки с координатами (х, у), в которых Р(х, у) = Q(x, у) = 0. Иными словами, особые точки — это точки, в которых производная у по х равна нулю, разделенному на ноль, то есть точки, в которых возникает неопределенность, ведь операция деления на 0 не имеет смысла. Именно поэтому такие точки называются особыми.

* * *

РЕЗИНОВАЯ ГЕОМЕТРИЯ

Топология — это раздел математики, изучающий исключительно форму и расположение геометрических объектов без учета их количественных свойств, в частности размеров. Например, схемы метро дают информацию о станциях и пересадках, но искажают расстояния. Важнейшую роль в развитии топологии сыграл Пуанкаре, благодаря которому она обрела популярность как «качественная геометрия». Предоставим слово самому Пуанкаре:

«Так называемый «анализ размещения», analysis situs, это целая доктрина, которая привлекала внимание крупнейших геометров и в которой одна за одной появилось несколько важных теорем. Отличие этих теорем от теорем классической геометрии в том, что они носят качественный характер и остаются корректными даже тогда, когда фигуры неумело срисует неопытный чертежник, исказив их пропорции и заменив прямые более или менее криволинейными отрезками».

Топологию часто сравнивают с геометрией резиновых лент: если бы геометрические фигуры были изготовлены из эластичной резины, их можно было бы превращать друг в друга. Так, с точки зрения топологии сфера и куб неразличимы, и не важно, что поверхность сферы гладкая, а куб имеет ребра. Говорят, что тополог — это математик, не способный отличить бублик от чашки кофе, так как его невнимательный взгляд замечает лишь то, что и чашка, и бублик имеют единственное отверстие (бублик — дырку, чашка — отверстие в ручке). Мы можем отличить бублик от апельсина, так как в бублике дырка есть, а в апельсине — нет. Но как мы отличили бы бублик от апельсина, если бы были совсем маленькими и жили на их поверхности? (Этот вопрос вовсе не так прост, ведь сферическая поверхность Земли кажется нам плоской.) Один из методов, позволяющий избавиться от сомнений, заключается в изучении группы Пуанкаре для нашего пространства. Допустим, что мы привязали собаку к крыльцу дома очень длинным резиновым поводком и оставили ее на несколько дней. Если мы живем на поверхности бублика, то, когда мы вернемся домой, поводок скорее всего будет натянут, так как собака наверняка пройдет через отверстие бублика. Если же мы живем на поверхности апельсина, то, когда мы вернемся, поводок будет висеть свободно, и мы сможем смотать его обратно.

Пуанкаре был автором знаменитой гипотезы, носящей его имя: «Является ли трехмерная сфера единственным трехмерным многообразием, на поверхности которого любая петля стягивается в точку?». Эта обобщенная гипотеза была доказана Фридманом для четырех измерений и Смэйлом — для большего числа измерений. Полное доказательство гипотезы Пуанкаре для трех измерений привел российский математик Григорий Перельман в 2003 году.

* * *

Далее Пуанкаре рассмотрел их с точки зрения топологии: он изучил поведение кривых, заданных дифференциальным уравнением, в окрестности этих точек, поскольку решения исходного дифференциального уравнения — это функции, которые можно представить на плоскости графически. Точнее говоря, для этих функций можно построить график в так называемой фазовой плоскости. Термин «фаза» изначально появился в электротехнике и обозначает состояние или место, в котором находится определенное решение. На фазовой плоскости изображается семейство кривых, которые описывают решения дифференциального уравнения. Эти кривые часто называются траекториями или, по аналогии с движением планет, орбитами.


Рекомендуем почитать
Урожаи и посевы

Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 6. Четвертое измерение. Является ли наш мир тенью другой Вселенной?

Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.