Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление - [6]
Однако Лаплас был очень и очень далек от истины. В своих уравнениях, описывавших систему «Солнце-Юпитер-Сатурн» (задачу трех тел) ученый пренебрег одним слагаемым, которое он счел слишком малым. Но это слагаемое могло неограниченно возрастать и вести к потере устойчивости Солнечной системы. В отличие от Лагранжа, крайне скрупулезного в расчетах, Лаплас был подобен лису, заметавшему собственные следы хвостом. Он часто забывал указывать источники, из которых брал те или иные результаты, и создавалось впечатление, что все они принадлежали ему лично. Математические задачи, с которыми Лаплас сталкивался в физических исследованиях, он решал так же небрежно. Американский астроном, который перевел «Трактат о небесной механике» на английский язык, говорил, что каждый раз, когда он видел фразу «нетрудно видеть, что…», то понимал: для восстановления пропущенного потребуется несколько часов упорного труда.
Портрет Лапласа (1749–1827), «Ньютона революционной Франции».
Многие физики и математики XIX века посвятили себя поискам полного решения задачи трех тел и ответа на вопрос об устойчивости Солнечной системы. Со времен великого Ньютона до 1900 года на эту тему было написано более 800 работ.
Среди математиков, пытавшихся справиться с этой задачей, нашелся и человек, сыгравший ключевую роль в создании теории хаоса, — гениальный Анри Пуанкаре (1854–1912).
Еще в детстве Пуанкаре проявлял живой интерес к математике, однако в остальном он был неуклюжим и рассеянным. Он считается последним математиком-универ салом: в отличие от узких специалистов, Пуанкаре интересовало буквально все — он занимался анализом, дифференциальными уравнениями, группами, топологией, небесной механикой и математической физикой, а также философией, преподаванием и просветительской работой. Разумеется, он был первым математиком, кто столкнулся лицом к лицу с хаосом при решении задачи трех тел.
Жюль Анри Пуанкаре в возрасте 36 лет.
«Мысль — это всего только молния в ночи. Но в этой молнии — все».
Знаменитая работа Пуанкаре, посвященная этой задаче, была опубликована в 1890 году, когда ученому было всего 36 лет, однако ее история началась раньше.
В 1885 году европейские математики узнали, что под покровительством Оскара II, короля Швеции и Норвегии, пройдет важный международный математический конкурс. Оскар II, изучив ряд математических дисциплин в университете, чувствовал, что математике нужно придать новый толчок. В рамках международного конкурса была учреждена премия для того, кто сможет решить задачу трех тел и открыть путь к изучению устойчивости Солнечной системы.
В 1884 году Магнус Геста Миттаг-Леффлер (1846–1927), преподаватель математики Стокгольмского университета, предложил королю Оскару II провести математический конкурс, приуроченный к шестидесятилетнему юбилею монарха, который должен был праздноваться через 5 лет, 21 января 1889 года. В те годы подобные конкурсы были вполне обычным делом, и хотя премии обычно не отличались большим размером, победители пользовались тем же авторитетом, что и нынешние нобелевские лауреаты. С другой стороны, этим конкурсом Миттаг-Леффлер хотел привлечь внимание специалистов к журналу Acta Mathematica, который он основал незадолго до того при неоценимой поддержке короля.
Подобрать членов жюри и организационного комитета конкурса было совсем не просто. Миттаг-Леффлер хотел избежать споров и обвинений в предвзятости, поэтому выбрал тех, с кем был знаком лично: своих бывших преподавателей, Шарля Эрмита и Карла Вейерштрасса как представителей французской и немецкой математической школы, а также Софью Ковалевскую, блестящую ученицу Миттаг-Леффлера и Вейерштрасса.
С помощью Миттаг-Леффлера члены организационного комитета сформулировали четыре вопроса, один из которых касался решения задачи n тел: «Для данной системы, состоящей из произвольного числа материальных точек, взаимодействующих друг с другом согласно законам Ньютона, предлагается выразить координаты каждой точки с помощью ряда, содержащего известные функции времени, которые бы равномерно сходились для любого значения времени.
По-видимому, эта задача, решение которой расширит наши знания об устройстве Вселенной, может быть решена известными на сегодня методами анализа. Это следует предполагать по меньшей мере потому, что незадолго до смерти Иоганн Петер Густав Лежён Дирихле сообщил своему другу, математику Леопольду Кронекеру, что обнаружил метод интегрирования дифференциальных уравнений механики и успешно применил его для доказательства устойчивости нашей Солнечной системы. К сожалению, нам ничего не известно об этом методе, хотя почти со стопроцентной уверенностью можно предполагать, что он не подразумевал каких-либо объемных и сложных расчетов, а основывался на некой простой идее. Разумно ожидать, что эту идею можно будет обнаружить вновь в ходе более тщательного и серьезного исследования.
Если никому не удастся решить предложенную задачу в указанные сроки, премия может быть присуждена работе, посвященной любой другой задаче механики, которая будет рассмотрена указанным образом и полностью решена».
За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.