Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление - [4]
В XVII–XIX веках физики последовательно расширяли математическую картину мира, предлагая все новые дифференциальные уравнения для изучения самых разных областей, к примеру уравнения Навье — Стокса, описывающие движение вязкой жидкости, или уравнения Максвелла, характеризующие электромагнитное поле. Всю природу — твердые тела, жидкости, звук, тепло, свет, электричество — стало возможно описать с помощью дифференциальных уравнений. Однако найти уравнения, характеризующие то или иное явление природы, и решить их — две принципиально разные задачи.
Существуют два типа дифференциальных уравнений: линейные и нелинейные.
Дифференциальное уравнение называется линейным, если сумма двух его решений также будет его решением. В линейном уравнении ни сама неизвестная функция, ни ее производная не возведены в степень, отличную от нуля или единицы. Линейные дифференциальные уравнения описывают события, в которых действие совокупности причин равно совокупному действию этих причин по отдельности. В нелинейных уравнениях, напротив, подобное соотношение между причинами и следствиями не наблюдается, и совокупность двух причин может привести к неожиданным последствиям. Как вы увидите позднее, нелинейности всегда сопутствует хаос.
* * *
НЬЮТОН И ПЕРВОЕ ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ
Самое знаменитое дифференциальное уравнение, несомненно, принадлежит Ньютону: сила равна произведению массы на ускорение. В виде символов это уравнение записывается так:
F = m∙a где а = dv/dt — (ускорение есть отношение дифференциалов скорости и времени, то есть производная скорости по времени). Рассмотрим еще два простых примера:
(dy/dx) + y = 0
Это линейное дифференциальное уравнение, однако
(dy/dx) + y>2 = 0
уже будет нелинейным, так как в этом случае неизвестная функция у возведена в степень, отличную от нуля или единицы.
* * *
Теория линейных дифференциальных уравнений довольно быстро была разработана полностью. А вот с теорией нелинейных дифференциальных уравнений все обстояло иначе, и нелинейные задачи, например уравнение колебаний маятника, решаются путем приведения уравнений к линейному виду, то есть путем устранения всех неудобных членов. Иными словами, для данного нелинейного дифференциального уравнения решалось похожее линейное дифференциальное уравнение, а полученные решения использовались как приближенные решения исходного уравнения.
Этот метод был назван методом возмущений. Вскоре стала понятна его неэффективность, однако прошло еще много времени, прежде чем нелинейным дифференциальным уравнениям стало уделяться примерно такое же внимание, что и линейным.
Одной из нелинейных задач, не дававших покоя физикам и математикам с XVII века, была задача небесной механики, связанная с моделированием Солнечной системы — задача n тел. Необходимо определить траекторию движения в пространстве для n тел разной массы, взаимодействующих по закону тяготения.
Несмотря на простую формулировку, решить эту задачу совсем не просто. Ньютон решил геометрически задачу двух тел для двух сфер, движущихся под действием взаимного притяжения, и привел решение в «Математических началах натуральной философии». В 1734 году Даниил Бернулли (1700–1782) привел аналитическое решение этой задачи в статье, удостоенной премии Французской академии наук, а во всех подробностях задача была рассмотрена лишь в 1744 году Эйлером, в труде «Теория движения планет и комет».
Портрет Эйлера.
«Читайте, читайте Эйлера — он учитель всех нас!»
(Пьер-Симон Лаплас)
* * *
НЕЛИНЕЙНОЕ УРАВНЕНИЕ КОЛЕБАНИЙ МАЯТНИКА
Если обозначить через θ угол наклона маятника относительно вертикали, то нелинейное дифференциальное уравнение колебаний маятника будет записываться так: d>2θ/dt>2 + sin θ = 0.
Для малых колебаний это уравнение можно заменить линейным, использовав в качестве приближенного значения тригонометрической функции sin θ сам угол θ. Полученное уравнение d>2θ/dt>2 + sin θ = 0 решить нетрудно: это линейное дифференциальное уравнение второго порядка, так как в нем фигурирует вторая производная, однако ни вторая производная, ни θ не возводятся в степень, большую 1.
Приведем еще один пример нелинейного дифференциального уравнения: m∙(dv/dt) — v>2 = mg, где g — ускорение свободного падения (9,8 м/с>2). Это уравнение описывает движение снаряда в среде, сопротивление которой пропорционально квадрату его скорости (v>2 и будет нелинейным членом уравнения).
* * *
После того как задача n тел была решена для n = 2, физики и математики XVIII и XIX столетий приступили к решению этой задачи для n = 3, чтобы описать относительное движение Солнца, Земли и Луны. Были начаты две параллельные исследовательские программы: в рамках первой велся поиск общих приближенных решений с помощью метода возмущений, в рамках второй — поиск точных частных решений. К примеру, Лагранж решил задачу трех тел, рассмотрев систему, включающую Солнце, Юпитер и астероид Ахиллес. Самый знаменитый труд Лагранжа,
«Аналитическая механика», стал достойным завершением работ Ньютона по механике. Вообще этот математик считал Ньютона счастливейшим из ученых: Вселенная всего одна, а ее математические законы открыл именно он.
«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.
Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..
Как помочь ребенку полюбить математику? Эта книга поможет вам и вашим детям взглянуть по-новому на изучение математики, закрыть пробелы в знаниях и превратить учёбу в удовольствие.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.